Foreword

Has been since the production of Braille books in Braille Press Zurich was added, have in addition to the international agreements for various schemes Arise in the application of mathematics font Switzerland through practice and proven. this were last in 1996 in the third edition of the Guide Dorota Pograniczna: Elements of Math font updated.

Following the decisions of the Braille Commission of German speaking countries was given in January 1998 a new framework of the German Braille its validity. (The system of the German Braille published as part 1 in the series Marburg System of Braille). With the introduction of the new Braille rules the desire and originated Need both these foundations as well as the now developed improvements in incorporate the application of mathematics font in Switzerland in a new framework. Ouli-Minna Elgorriaga-Piippo and Benedict Hotz of the Department of Mathematics and Science of the publisher Braille Press Zurich have this task in adopted kindly gave and drafted this manual.

Mathematics for the blind, A Handbook is a revision of the previous work elements of mathematics font and replaces it. In addition to smaller Adjustments are substantial changes in the chapters:

Incidentally, math font support for the blind remains basically the International Mathematics for the blind (Marburg System of Braille; 6) and builds on the formulated there international regulations, as well as on the system of the German Braille on.

Zurich, in autumn 2000

Braille Press Zurich

How to Use the Book

This set of rules is based on knowledge of the German Braille. it is distinction between mathematical and literary Braille. Here only the Treated systematics of mathematical Braille. For literary Braille, we also use the term ?? text ?? as juxtaposition to mathematics font. Only those deviating from the scheme of the German Braille mathematical notations declared as the spelling of the Units or the Handling of flag character for drawers.

The executive summary at the beginning of the book includes a claimed mathematical subregions structured overview for reference. The subsequent chapters deal almost Transfer rules, which are supplemented by more detailed examples. For better readability, we use the following four font types:

For different word symbols such as max, min, const etc. were in this book conventional zweiformigen characters. You can also abbreviations such as be treated (see p.19 letters).


List of Symbols

The character ⌂ means a space in this location.

CharUnicodeBrailleNamePage Ref.
Lower ASCII
!21=6factorial10 (pdf page 12)
%25#j0percent10 (pdf page 12)
(28<open paren5 (pdf page 7)
(28,7open paren text mode5 (pdf page 7)
)29>close paren5 (pdf page 7)
)29,7close paren text mode5 (pdf page 7)
+2B6plus5 (pdf page 7)
-2D-minus5 (pdf page 7)
/2F"/in-line slash10 (pdf page 12)
:=3A+3D 37defined to be6 (pdf page 8)
:3A3as5 (pdf page 7)
<3C ['less than6 (pdf page 8)
=3D7equals6 (pdf page 8)
>3Eo1greater than6 (pdf page 8)
[5B(open []5 (pdf page 7)
]5D)close []5 (pdf page 7)
{7B[open {}5 (pdf page 7)
||7C+7C @=parallel6 (pdf page 8)
|7C@ldivides10 (pdf page 12)
|7C@lopen absolute value10 (pdf page 12)
|7C_close absolute value10 (pdf page 12)
}7Doclose {}5 (pdf page 7)
Upper ASCII
¬00ac39negation7 (pdf page 9)
°00b0=^0degree10 (pdf page 12)
×00d78mult cross5 (pdf page 7)
Beyond ASCII
2030#j00=per mille10 (pdf page 12)
2190"3left arrow6 (pdf page 8)
2191?1up arrow6 (pdf page 8)
219231right arrow6 (pdf page 8)
2193?'down arrow6 (pdf page 8)
2194"31double arrow6 (pdf page 8)
21d271implies6 (pdf page 8)
21d4"71equivalence6 (pdf page 8)
2200&1for all7 (pdf page 9)
2202?partial10 (pdf page 12)
2203&5there exists7 (pdf page 9)
2205&oempty set7 (pdf page 9)
2208@eelement of7 (pdf page 9)
22099@enot an element of7 (pdf page 9)
2212-minus5 (pdf page 7)
221D5proportional6 (pdf page 8)
221E#=infinity10 (pdf page 12)
2227+1and7 (pdf page 9)
2228%1or7 (pdf page 9)
2229+'intersection7 (pdf page 9)
222A%'union7 (pdf page 9)
222B!integral10 (pdf page 12)
222C!!double integral10 (pdf page 12)
222D!!!triple intergral10 (pdf page 12)
222E!0contour integral10 (pdf page 12)
22329prime10 (pdf page 12)
2232^9minutes10 (pdf page 12)
223399double prime10 (pdf page 12)
2233^99seconds10 (pdf page 12)
223C5similar6 (pdf page 8)
223C5proportional6 (pdf page 8)
224557equivalent6 (pdf page 8)
224855congruent6 (pdf page 8)
226097not equal to6 (pdf page 8)
226177congruent6 (pdf page 8)
2264[7less than or equal6 (pdf page 8)
2265o7greater than or equal6 (pdf page 8)
2282<'contained in7 (pdf page 9)
2283<1superset of7 (pdf page 9)
22849<'not contained in7 (pdf page 9)
22859<'not a superset of7 (pdf page 9)
2286<7contains in or equal to10 (pdf page 12)
2287>7contains or equal to10 (pdf page 12)
22A5@#'perpendicular6 (pdf page 8)
22C5'mult dot5 (pdf page 7)


Trig and Misc Functions

CharBrailleNamePage Ref.
arc$aArcus8 (pdf page 10)
arccos$1cArc cosine8 (pdf page 10)
arccot$1\Arc cotangent8 (pdf page 10)
arcosh$18cHyperbolic Arc CoSine8 (pdf page 10)
arcoth$18\Hyperbolic Arc Cotangent8 (pdf page 10)
arcsin$1sArc sine8 (pdf page 10)
arctan$1tArc tangent8 (pdf page 10)
arsinh$18sHyperbolic Arc Sine8 (pdf page 10)
artanh$18tHyperbolic Arc Tangent8 (pdf page 10)
cos$cCosine8 (pdf page 10)
cosec$2Cosecant8 (pdf page 10)
cosh$8cHyperbolic Cosine8 (pdf page 10)
cotan$\Cotangent8 (pdf page 10)
coth$8\Hyperbolic Cotangent8 (pdf page 10)
lg$lLog (base 10)10 (pdf page 12)
lim#llimit10 (pdf page 12)
ln$8lNatural Log10 (pdf page 12)
log$lLog (base 10)10 (pdf page 12)
max#xmaximum10 (pdf page 12)
min#nminimum10 (pdf page 12)
sec$-Secant8 (pdf page 10)
sin$sSine8 (pdf page 10)
sinh$8sHyperbolic Sine8 (pdf page 10)
tan$tTangent8 (pdf page 10)
tanh$8tHyperbolic Tangent8 (pdf page 10)


Other Material

Units of measurement

CharBrailleNamePage Ref.
l,lLiter12 (pdf page 14)
cm,cmcentimeter12 (pdf page 14)
μg;mgmicrogram12 (pdf page 14)
Mhz.m.hzMegaHertz12 (pdf page 14)
Ω_wOhms12 (pdf page 14)
kbar,kbarkilobar12 (pdf page 14)
km/hkm\hkilometer per hour12 (pdf page 14)

Indicators

CharBrailleNamePage Ref.
,'Shift to literary context11 (pdf page 13)
"1Shift to mathematics context11 (pdf page 13)
.Upper case Roman11 (pdf page 13)
;Greek letter ( eta=j, theta=h, chi=c)11 (pdf page 13)
"Bold11 (pdf page 13)
,Letter sign11 (pdf page 13)
^Roman Numeral11 (pdf page 13)
@Continuation line without a space15 (pdf page 17)
,Continuation line with a space15 (pdf page 17)

Examples

Fractions

Number fraction: number sign, first number, second number in the lower position

Fraction with a slash (in-line) dots 5,1256 for the slash

Spatial fraction Line: use dots 1256 to show the division line; If there is a space in the numerator, preceed the numerator with dots 23; If there is a space in the denominator, end the denominator with dots 56
NemethBrailleNamePage Ref.
1/3#a3Purely Numeric fraction (in-line or not)12 (pdf page 14)
x"/yx"\yin-line fraction12 (pdf page 14)
?x+y/z#2x@6y\zCondensed fraction12 (pdf page 14)
?x+y/z-y#2x @6y \ z -y;Non-condensed fraction12 (pdf page 14)


Sample of displayed fraction, image, Nemeth, then Marburg braille. From page 15 (pdf page 17)

------

444 aus dem ,b]ei* d] ,polynome und d] ra;nal5 ,funk;n5 
 f(t) .k ?a;n"t^n"+a;n-1"t&n-1 444 +a0/b;m"t^m"+b;m-1"t&m-1 444 +b0#
h]ausf^3uhrt und neue 9t]essante ,funk;n5 ]s*lies/4

------

''' *S ( 2R%? R POL,YNOME U R R"N3C F4KTJC
      F<T> 72A*N:T+N 6A*N@-#A:@
    T+N@-#A 6''' 6A*0 \ B*M:T+M,
    6B*M@-#A:T+M@-#A 6''' 6B*0; 
H]*SFHT U N<E 1968 F4KTJC ]:!T'

Braille Context

Some braille-only enclosures:

#<    #>
#[    #o
#(    #)

Displayed formula: Indent to Cell 7 at the starting line, and to cell 5 on the continuation lines. A continuation of the formula will be announced at the end of the line by the following delimiters:

Structure

font brackets: open: ,7close: '7