Has been since the production of Braille books in Braille Press Zurich was added, have in addition to the international agreements for various schemes Arise in the application of mathematics font Switzerland through practice and proven. this were last in 1996 in the third edition of the Guide Dorota Pograniczna: Elements of Math font updated.
Following the decisions of the Braille Commission of German speaking countries was given in January 1998 a new framework of the German Braille its validity. (The system of the German Braille published as part 1 in the series Marburg System of Braille). With the introduction of the new Braille rules the desire and originated Need both these foundations as well as the now developed improvements in incorporate the application of mathematics font in Switzerland in a new framework. Ouli-Minna Elgorriaga-Piippo and Benedict Hotz of the Department of Mathematics and Science of the publisher Braille Press Zurich have this task in adopted kindly gave and drafted this manual.
Mathematics for the blind, A Handbook is a revision of the previous work elements of mathematics font and replaces it. In addition to smaller Adjustments are substantial changes in the chapters:
Incidentally, math font support for the blind remains basically the International Mathematics for the blind (Marburg System of Braille; 6) and builds on the formulated there international regulations, as well as on the system of the German Braille on.
Zurich, in autumn 2000
Braille Press Zurich
This set of rules is based on knowledge of the German Braille. it is distinction between mathematical and literary Braille. Here only the Treated systematics of mathematical Braille. For literary Braille, we also use the term ?? text ?? as juxtaposition to mathematics font. Only those deviating from the scheme of the German Braille mathematical notations declared as the spelling of the Units or the Handling of flag character for drawers.
The executive summary at the beginning of the book includes a claimed mathematical subregions structured overview for reference. The subsequent chapters deal almost Transfer rules, which are supplemented by more detailed examples. For better readability, we use the following four font types:
abc, ABC, 12345
For different word symbols such as max, min, const etc. were in this book conventional zweiformigen characters. You can also abbreviations such as be treated (see p.19 letters).
The character ⌂ means a space in this location.
Char | Unicode | Braille | Name | Page Ref. |
---|---|---|---|---|
Lower ASCII | ||||
! | 21 | =6 | factorial | 10 (pdf page 12) |
% | 25 | #j0 | percent | 10 (pdf page 12) |
( | 28 | < | open paren | 5 (pdf page 7) |
( | 28 | ,7 | open paren text mode | 5 (pdf page 7) |
) | 29 | > | close paren | 5 (pdf page 7) |
) | 29 | ,7 | close paren text mode | 5 (pdf page 7) |
+ | 2B | ⌂6 | plus | 5 (pdf page 7) |
- | 2D | ⌂- | minus | 5 (pdf page 7) |
/ | 2F | "/ | in-line slash | 10 (pdf page 12) |
:= | 3A+3D | ⌂37 | defined to be | 6 (pdf page 8) |
: | 3A | ⌂3 | as | 5 (pdf page 7) |
< | 3C | ⌂[' | less than | 6 (pdf page 8) |
= | 3D | ⌂7 | equals | 6 (pdf page 8) |
> | 3E | ⌂o1 | greater than | 6 (pdf page 8) |
[ | 5B | ( | open [] | 5 (pdf page 7) |
] | 5D | ) | close [] | 5 (pdf page 7) |
{ | 7B | [ | open {} | 5 (pdf page 7) |
|| | 7C+7C | ⌂@= | parallel | 6 (pdf page 8) |
| | 7C | ⌂@l | divides | 10 (pdf page 12) |
| | 7C | ⌂@l | open absolute value | 10 (pdf page 12) |
| | 7C | ⌂_ | close absolute value | 10 (pdf page 12) |
} | 7D | o | close {} | 5 (pdf page 7) |
Upper ASCII | ||||
¬ | 00ac | ⌂39 | negation | 7 (pdf page 9) |
° | 00b0 | =^0 | degree | 10 (pdf page 12) |
× | 00d7 | ⌂8 | mult cross | 5 (pdf page 7) |
Beyond ASCII | ||||
‰ | 2030 | #j00= | per mille | 10 (pdf page 12) |
← | 2190 | ⌂"3 | left arrow | 6 (pdf page 8) |
↑ | 2191 | ⌂?1 | up arrow | 6 (pdf page 8) |
→ | 2192 | ⌂31 | right arrow | 6 (pdf page 8) |
↓ | 2193 | ⌂?' | down arrow | 6 (pdf page 8) |
↔ | 2194 | ⌂"31 | double arrow | 6 (pdf page 8) |
⇒ | 21d2 | ⌂71 | implies | 6 (pdf page 8) |
⇔ | 21d4 | ⌂"71 | equivalence | 6 (pdf page 8) |
∀ | 2200 | ⌂&1 | for all | 7 (pdf page 9) |
∂ | 2202 | ? | partial | 10 (pdf page 12) |
∃ | 2203 | ⌂&5 | there exists | 7 (pdf page 9) |
∅ | 2205 | &o | empty set | 7 (pdf page 9) |
∈ | 2208 | ⌂@e | element of | 7 (pdf page 9) |
∉ | 2209 | ⌂9@e | not an element of | 7 (pdf page 9) |
− | 2212 | ⌂- | minus | 5 (pdf page 7) |
∝ | 221D | ⌂5 | proportional | 6 (pdf page 8) |
∞ | 221E | #= | infinity | 10 (pdf page 12) |
∧ | 2227 | ⌂+1 | and | 7 (pdf page 9) |
∨ | 2228 | ⌂%1 | or | 7 (pdf page 9) |
∩ | 2229 | ⌂+' | intersection | 7 (pdf page 9) |
∪ | 222A | ⌂%' | union | 7 (pdf page 9) |
∫ | 222B | ! | integral | 10 (pdf page 12) |
∬ | 222C | !! | double integral | 10 (pdf page 12) |
∭ | 222D | !!! | triple intergral | 10 (pdf page 12) |
∮ | 222E | !0 | contour integral | 10 (pdf page 12) |
′ | 2232 | 9 | prime | 10 (pdf page 12) |
′ | 2232 | ^9 | minutes | 10 (pdf page 12) |
″ | 2233 | 99 | double prime | 10 (pdf page 12) |
″ | 2233 | ^99 | seconds | 10 (pdf page 12) |
∼ | 223C | ⌂5 | similar | 6 (pdf page 8) |
∼ | 223C | ⌂5 | proportional | 6 (pdf page 8) |
≅ | 2245 | ⌂57 | equivalent | 6 (pdf page 8) |
≈ | 2248 | ⌂55 | congruent | 6 (pdf page 8) |
≠ | 2260 | ⌂97 | not equal to | 6 (pdf page 8) |
≡ | 2261 | ⌂77 | congruent | 6 (pdf page 8) |
≤ | 2264 | ⌂[7 | less than or equal | 6 (pdf page 8) |
≥ | 2265 | ⌂o7 | greater than or equal | 6 (pdf page 8) |
⊂ | 2282 | ⌂<' | contained in | 7 (pdf page 9) |
⊃ | 2283 | ⌂<1 | superset of | 7 (pdf page 9) |
⊄ | 2284 | ⌂9<' | not contained in | 7 (pdf page 9) |
⊅ | 2285 | ⌂9<' | not a superset of | 7 (pdf page 9) |
⊆ | 2286 | ⌂<7 | contains in or equal to | 10 (pdf page 12) |
⊇ | 2287 | ⌂>7 | contains or equal to | 10 (pdf page 12) |
⊥ | 22A5 | ⌂@#' | perpendicular | 6 (pdf page 8) |
⋅ | 22C5 | ⌂' | mult dot | 5 (pdf page 7) |
Char | Braille | Name | Page Ref. |
---|---|---|---|
arc | $a | Arcus | 8 (pdf page 10) |
arccos | $1c | Arc cosine | 8 (pdf page 10) |
arccot | $1\ | Arc cotangent | 8 (pdf page 10) |
arcosh | $18c | Hyperbolic Arc CoSine | 8 (pdf page 10) |
arcoth | $18\ | Hyperbolic Arc Cotangent | 8 (pdf page 10) |
arcsin | $1s | Arc sine | 8 (pdf page 10) |
arctan | $1t | Arc tangent | 8 (pdf page 10) |
arsinh | $18s | Hyperbolic Arc Sine | 8 (pdf page 10) |
artanh | $18t | Hyperbolic Arc Tangent | 8 (pdf page 10) |
cos | $c | Cosine | 8 (pdf page 10) |
cosec | $2 | Cosecant | 8 (pdf page 10) |
cosh | $8c | Hyperbolic Cosine | 8 (pdf page 10) |
cotan | $\ | Cotangent | 8 (pdf page 10) |
coth | $8\ | Hyperbolic Cotangent | 8 (pdf page 10) |
lg | $l | Log (base 10) | 10 (pdf page 12) |
lim | #l | limit | 10 (pdf page 12) |
ln | $8l | Natural Log | 10 (pdf page 12) |
log | $l | Log (base 10) | 10 (pdf page 12) |
max | #x | maximum | 10 (pdf page 12) |
min | #n | minimum | 10 (pdf page 12) |
sec | $- | Secant | 8 (pdf page 10) |
sin | $s | Sine | 8 (pdf page 10) |
sinh | $8s | Hyperbolic Sine | 8 (pdf page 10) |
tan | $t | Tangent | 8 (pdf page 10) |
tanh | $8t | Hyperbolic Tangent | 8 (pdf page 10) |
Char | Braille | Name | Page Ref. |
---|---|---|---|
l | ,l | Liter | 12 (pdf page 14) |
cm | ,cm | centimeter | 12 (pdf page 14) |
μg | ;mg | microgram | 12 (pdf page 14) |
Mhz | .m.hz | MegaHertz | 12 (pdf page 14) |
Ω | _w | Ohms | 12 (pdf page 14) |
kbar | ,kbar | kilobar | 12 (pdf page 14) |
km/h | km\h | kilometer per hour | 12 (pdf page 14) |
Char | Braille | Name | Page Ref. |
---|---|---|---|
,' | Shift to literary context | 11 (pdf page 13) | |
"1 | Shift to mathematics context | 11 (pdf page 13) | |
. | Upper case Roman | 11 (pdf page 13) | |
; | Greek letter ( eta=j, theta=h, chi=c) | 11 (pdf page 13) | |
" | Bold | 11 (pdf page 13) | |
, | Letter sign | 11 (pdf page 13) | |
^ | Roman Numeral | 11 (pdf page 13) | |
@ | Continuation line without a space | 15 (pdf page 17) | |
, | Continuation line with a space | 15 (pdf page 17) |
Number fraction: number sign, first number, second number in the lower position
Fraction with a slash (in-line) dots 5,1256 for the slash
Spatial fraction Line: use dots 1256 to show the division line; If there is a space in the numerator, preceed the numerator with dots 23; If there is a space in the denominator, end the denominator with dots 56
Nemeth | Braille | Name | Page Ref. |
---|---|---|---|
1/3 | #a3 | Purely Numeric fraction (in-line or not) | 12 (pdf page 14) |
x"/y | x"\y | in-line fraction | 12 (pdf page 14) |
?x+y/z# | 2x@6y\z | Condensed fraction | 12 (pdf page 14) |
?x+y/z-y# | 2x @6y \ z -y; | Non-condensed fraction | 12 (pdf page 14) |
Sample of displayed fraction, image, Nemeth, then Marburg braille. From page 15 (pdf page 17)
------
444 aus dem ,b]ei* d] ,polynome und d] ra;nal5 ,funk;n5 f(t) .k ?a;n"t^n"+a;n-1"t&n-1 444 +a0/b;m"t^m"+b;m-1"t&m-1 444 +b0# h]ausf^3uhrt und neue 9t]essante ,funk;n5 ]s*lies/4
------
''' *S ( 2R%? R POL,YNOME U R R"N3C F4KTJC F<T> 72A*N:T+N 6A*N@-#A:@ T+N@-#A 6''' 6A*0 \ B*M:T+M, 6B*M@-#A:T+M@-#A 6''' 6B*0; H]*SFHT U N<E 1968 F4KTJC ]:!T'
Some braille-only enclosures:
#< #> #[ #o #( #)
Displayed formula: Indent to Cell 7 at the starting line, and to cell 5 on the continuation lines. A continuation of the formula will be announced at the end of the line by the following delimiters:
font brackets: open: ,7close: '7