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Introduction,

A topological space is said to be para-Lindel8f if every open
cover of it has a locally countable open refinement. The subject of
locally finite collections of open sets and paracompact spaces has been
fairly well developed for some time, However, the understanding of
their weaker counterparts, locally countable collections of open sets and
para-Lindeldf spaces, is relatively sketchy, The developments in this
area upon which this paper builds, due mainly to Fleissner and Reed and
also extended by Burke, are rather recent. The main question answered
in this paper, asked by Fedorcuk [10] , Tall[14], Fleissner [1],

Reed [2], Burke [5], and Nyikos [6], is: Must every para-Lindeldf
T 3-Space be paracompact? The answer is no (not even completely
regular or metacompact), as we will demonstrate with a variety of
examples,

Para-Lindeldf spaces must be assumed to be T, to provide an
interesting theory, for there is a space with a countable base which is
Hausdorff but not regular, On the other hand, paracompactness richly
endows T,-spaces with all of the below separation properties, connected
in T,-spaces by the in the indicated implications:

Hausdorff <— regular &€——— completely regular &——— nomal

collectionwise Hausdorff collectionwise normal
+
T if normal T
strongly L

collectionwise Hausdorff monotonically normal



As shown by Fleissner and Reed [2], para-Lindel8f T,-spaces are
collectionwise Hausdorff, in fact strongly so, and are thus of interest
to those studying the normal Moore space problem, Included among the
spaces we will construct are para-Lindeldf Tl-spaces which are respect-
ively regular but not completely regular, completely regular but not normal,
and normal but not collectionwise normal, We will also consider some
of the other covering properties enjoyed by paracompact Tz-apacas.
such as countable paracompactness, metacompactness, and screenability.
In Chapter 2 there is a brief review of some basic facts concern-
ing para-Lindeldf spaces, Chapter 3 discusses the techniques used
in the search for a para-Lindel®f, nonparacompact T 3-space, due mainly
to Fleissner [1] . The paper's main examples of such spaces are
presented in Chapters 4 and 5. In Chapter 6, the information gained
from these examples is amplified, and some related unanswered research

guestions are asked,




Section 2. 1. Conventions.

Except where otherwise specified, the letters i, j, m, and n
will be reserved for nonnegative integers, The symbol C will denote
inclusion, not necessarily proper inclusion, For the meaning 'belong-
ing to," the symbol ¢ andthe word 'in" will be used interchange-
ably., The symbol | will denote restriction, Ordered pairs will

be notated with ordinary parentheses,
The symbol ~  will be used with the meaning ''tied to'"' as

follows, Let g be a function with domain an ordinal vy and with
range a set of ordinals, For an ordinal a, gh @  will denote
the new function g¢' = gU{(y, @)} . Thatis, g' hasdomain
vy+1, ¢'Py=9g, and g(y)=a.

The symbol  [] will mark the end of each definition,
example, or proof, Possibly unfamiliar topological properties appear-
ing in the text will be defined in the glossary. Some of the less
familiar ones will be defined in the text as well,

The set theory assumed in this paper is ZFC , Results requir-
ing additional axioms of set theory will be so indicated., In particular,
some of the examples use MA(w,; ), part of (MA + 7ICH)

(where MA stands for Martin's axiom and CH for the continuum
hypothesis). A topnlngicul equivalent of MA( ml‘,l, reminiscent of
the Baire category theorem, is: In a compact, c¢.c,c. Hausdorff
space, the intersection of any collection of w,~many dense open sets
is nonempty . Note that a topological space is (has the) c.c. c.
(countable chain condition) provided there is no collection of



uncountably many mutually disjoint open subsets of the space.




Section 2,2, Para-LindelSf Spaces: Basic Facts

2.2, 1: Definitions,

(a) A topological space X is para-LindelSf if every open cover
of X has a locally countable open refinement. A topological space X
is o-para-Lindeldf if every open cover of X has an open refinement
which is o-locally countable (i, e., the union of countably many

locally countable collections),

(b) A collection § of subsets of a topological space X is
discrete if every point of X has a neighborhood which meets (i.e.,
has nonempty intersection with) at most one member of g, A collection
of points of X is discrete if the associated collection of singletons is
discrete.

(c) A T |~Space X is collectionwise Hausdorff (respectively,
strongly collectionwise Hausdorff) if for every discrete collection
{xﬂlu € A} of points of X, there is a mutually disjoint (respect-
ively, discrete) collection {‘Uula € A} of open sets with

xaEUﬂ foreach a« in A, O

The many separation properties which paracompactness implies
for Hausdorff spaces provide a good means for comparing paracompact
and para-Lindelof Ta-apnces .- A more complete treatment of the
positive separation results for para-Lindelof Ta-spaces is given by
Fleissner and Reed in [2]. One of their important results of this kind
is that these spaces are strongly collectionwise Hausdorff, A proof of
this, which indicates the flavor of arguments using local countability,
is included here .



2,2,2: Lemma, let H and K be subsets of a topological
space X, Porany h in H and k in K, say h#*k and
k*h provided h# k. Let S(x) be an open neighborhood of
x foreach x in H UK. Suppose that foreach x in H UK,
there is noelement x of HUK such that x' * x and
x' ¢ (%) . Suppose also thatforeach x in H UK, there are
only countably many points x in HUK with x *x for
which S nS(x')# . Theneach 8(x) can be refined to an open
neighborhood R(x) of x so thatthe collection {R(x)|x e HUK}
satisfies the following. For each R(x), thereis noset R(x')

suchthat x#x and R NRE)EF.

Proof, Let ~ be the equivalence relationon HUK
generated by therule x~x' if x#x' and Sx nSx)##.
let E= (HUK)/~, the setof ~-equivalenceclasseson HUK.
Notice that each such equivalence class is countable. Enumerate the
members of each such class e as Xe, 00 %e,1% ¥s,2% """

( finitely many or w-many as needed) . For each Xe n* let

R[xe_ o) = S{xe, n) 'U{E{xa’jjlj-:n and a3 "e.n} . O
2,2,3: Theorem, Let X be a para-Lindelof T3-spaoa.

Then:
(@) X 1is collectionwise Hausdorff.
(b) X is strongly collectionwise Hausdorff.

Proof . (@: et X,= {xnla € A} be a discrete collect-

ion of points of X . Byreqularityof X, foreach &« in A let



T

U, beanopenneighborhood of x  such that 'U'ﬂ nX, = {xu} .
Since X is para-Lindeldf, the open cover {Ua |a e A}y [x-xu}
has a locally countable open refinement V. Foreach a in A

let V A be a neighborhood of x belongingto V. Since the

collection 1, = {Vu[a € A} 13‘:;00&11},!' countable, foreach a« in
A let Wa be an open subset of "J'a which witnesses this at
X oyt that is, Xy € \T'a and V; meets only countably many
members of 1V, . Then the collection of open sets uh ={V'a |a € A}
is star-countable; that is, each set ’J‘a avoids all but countably
many members of \j . _

Now we can apply Lemma 2.2.2 with H=X,, K= xo, and
8(x,) = v"! foreach a in A; letthe sets R(x) C S(x,)
satisfy the lemma's conclusion, Let Wa = R{xﬂ) foreach «
in A, Then = {Wa]a € A} is a collection of mutually
disjoint open sets with X, € Wﬂ foreach a in A, Therefore

X is cnuecti;:nvdsa Hausdortf .,

(b): Continue from (a). Let 1y be an open cover which
testifies that w, 1is locally countable (for example, any open cover
witnessing the local countability of I_h} . Nowlet 2Z bea locally
countable open refinement of ' . Foreach a in A let 2'

a
be an open set witnessing the local countability of z at x g using
the regularity of X, assume without loss of generality that 'E';c wﬂ e

To prepare for an application of Lemma 2,2,2, let H = xD
and K=X-Ub,. Foreach a in A let S(x,)=Z, .
Finally, foreach x in K let 8(x) be a member of Z with



xe S(x). Since these satisfy the hypotheses of the lemma, let the
sets R(x) for x in H UK be as in its conclusion, Now let
G, = R(x,) foreach a in A and Qo={qula£ﬂ}. If
xe K, then R(x) meets no member of qn. Otherwise, for
one ¢ in A, x liesin wﬂ, which meets just one member
of Gy — namely G_ . Thus Gp isdiscrete, and X s
therefore strongly collectionwise Hausdorff . O

A number of results about paracompactness suggest similar
consideration of para-Lindelbfness, For example, by a familiar
theorem of E, Michael, every o-paracompact T,-space is actually
paracompact, The comparable situation regarding para-Lindeldf spaces
is somewhat different.

2,2, 4: Example. The Moore space constructed by William Fleissner

in [1] is o-para-LindelSf but not para-Lindeldf, O

2.2.5: Theorem (Fleissner and Reed [2]). 1Ifa T,-space
is countably paracompact and o-para-Lindeldf, then it is para-Lindeldf,

0

Some standard theorems about preservation of paracompactness
translate to similar theorems about preservation of para-Lindelfness.

2,2, 6: Theorems.
(@) A closed subspace of a para-Lindeltf space is para-Lindeldf.
If the space is T 3 and countably paracompact, we can replace closed

by P g (using the just-mentioned result of Fleissner and Reed ),

(b) The product of a para-Lindeldf space with a compact space




is para-Lindeldf.

Likewise, some standard examples showing nonpreservation of
paracompactness also reveal nonpreservation of a para-Lindeltfness.

z. & i: EKMEIES .
(a) An open subspace of a compact Hausdorff space need not be

para-Lindeldf. An example of this is w, asa subspace of the ordinal
space w + : In fact, @y is not even meta-Lindeldf,

(b) The product of a Lindeldf space with a Lindel®f metric space
need not be para-Lindeldf. An example of this is Michael's Product
Topology [1l, p. 105]. a

Another property using local countability, that of havinga o-
locally countable base, is closely linked with metrizability, V.,
Fedorcuk [10] proved that every paracompact T,-space having a o-
locally countable base is actually metrizable. Like the property of
being para-Lindeldf, this property is not understood as well as its
local finiteness counterpart (i.e., having a o-locally finite base,
which for 'l'.'3
neither of these two local countability properties implies the toher.

-spaces is equivalent to being metrizable ), Finally,

2,2,8: Examples.
(a) The Moore space constructed by Fleissner in [1] has a

o-locally countable base but is not para-Lindel8f,

(b) By Fedorcuk's theorem, any paracompact but nonmetrizable
T,-space is para-Lindeldf but does not have a o-locally countable base,



10
An example is the Sorgenfrey line ., O

However, as Fleissner and Reed point out in [}, itis easyto
see the following,

2,2,9: Theorem, Every para-Lindeldf Moore space hasa o-
locally countable base. ad



1

Section 3.1. The Approach.

The existence ofa  T,, para-LindelSf, nonparacompact space
is equivalent to the existence of such a space which is not normal,
This was pointed out by Van Mill as a consequence of the following
familiar theorem of Tamano.

3.L1: Theorem., For any Tychonoff space X, X is para-
compact iff X XPX is normal, 0

To obtain Van Mill's result, suppose X is T, and para-
Lindeldf but not paracompact, By Tamano's theorem, if X is
normal (and hence Tychonoff), then XX PX isagain T, and
para-Lindeldf but not normal, In light of this result, attempting to
constructa T,, para-Lindeldf, nonnormal space seems like a
natural approach to the main problem.

Fleissner points out in [1] whata T,, para-Lindeldf,
nonnormal space X must look like. '"To start with, X must
contain two disjoint closed sets . H and K which cannot be
separated. Because X is regular, there is a cover Uy of H
by open sets whose closures miss K, and similarly a cover Y
of K by open sets whose closures miss H." Since X is
para-Lindeldf and UgUy, U {(X-(HUK)} is an open cover of
X, g and Vo have open refinements ul and 1’1'
respectively, which make I.lml_:l:1 u{X-(HUK)} alocally
countable cover of X,

Although TRY 5] is locally countable, it cannot be
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star-countable., That is, it cannot witness its own local countability
at the points of HyUK. For the techniques used to prove Theorem
2,2,3 show that if every member of 4; meets only countably many
members of Uy, and simultaneously every member of ; meets
only countably many members of Uy» then H and K canbe
separated by disjoint open sets.

As Fleissner continues, 'Because {ul u l:‘l] is locally
countable, there is a coverof X by open sets each of which meets
only countably many elements of (U, Uy). This cover can be
refined so that it refines  u,U YU {X-(HUK)} and is itself
locally countable . Repeating this process, there are," for every

n = 1, '"locally countable open covers U of H and Vnsl

n+l
of K which refine Un and G, respectively and witness the
local countability of Up U hn" atthe pointsof H UK.

This picture of a Ts, para-Lindeldf, nonnormal space,
obtained by considering conditions true in every such space, is very
general, To it Fleissner adds detail by making some assumptions
which are helpful in working toward a specific example.

"We assume that the points of X - (H U K) are isolated.
We assume that," foreach n=1, "u, and b, are families
of w;-many disjoint clopen sets, We assume thateach Ue Un41
meets w-many V's e Uy and @, -many Vis € Yoy’ similarly

for Ve v Finally, we assume that

n+ *

U (u, Uuy) U{{x}:xeX-(HUK)}
new

is a base for X." Also, a consequence of these assumptions of
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of Fleissner's is the fact thateach Ue u, contains w)-many
members of Upil? similarly for each V ¢ by -

Fleissner then points out that, with these assumptions, we can
be more specific in describing X. Reworking his presentation
slightly, we enumerate the w,~many disjoint members of u, as
{Ul{aujl a, < ml}; similarly we enumerate U;  as
{vla: ﬂt} ]]ﬁu <w}. Then, for every Uag) e Uy, we
enumerate the @ =~many disjoint members of u, contained in it
as  {Uy(ep )| o <w}; weenumerate 1V, similardy. This
enumeration scheme reflects the fact that if Uz“'u' “1] meets
v, {Bu, Bll , then U (a,) meets vlfﬂnj . Continuing in
this manner, for every n=1, we enumerate l.tn A as
{Unﬂf“n*'”*“n”“u-“'- o < w} where U . (ey,***, 0 1, &)
is contained in Un{ocu, ""“n-l“ we enumerate Vs
similarly.

Bach heH les in exactly one Ue Un4l for each
ne . Thuseach h e H determines a function ?uu--ul
by the requirement that ﬁ{n)=an where he Unﬂ{ao,---,u;n}.
Likewise each ke K liesinexactlyone Ve U1 for each
ne o anddetermines a function K:w —w .  In addition,
forany ne w and U=Un+1{aﬂ,'",un}£ Yn4l? U
determines a function Oy ¢ n+l el defined by :r.u{.l] = ay
for 0 =i=n, Likewise each Velsn+1 determines a
function *rv=n+1--w1. Noticethat he U iff oy
restricts ﬁ; similarly ke V iff Ty restricts ﬁ' s
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To simplify the combinatorics needed to describe X, we now

recursively ''spread out' the enumeration scheme for Yy nl and

U forevery n=1, More precisely, we labeleach U ¢ U,

n+l
contained in Ultan) as Uztaﬂ,ml} for some o satisfying

@, > a, and, inaddition, a, > B, forevery \71({30)

1
which meets U, This is possible since U meets only count-

ably many members of Uy . We enumerate ¥, similarly, In
general, we label each Ue Upnsl contained in Un{au,"-,an_l)
as Unﬂ[un,---,an_l,an] where a, > a,, and

a >B,, forevery V (Byc+*,B, ;) meeting U; we
enumerate Vo similarly.

With this new enumeration scheme, each he H, ke K
represents an increasing function ﬁ, ﬁ I W ~> W, . Also, for
each n = 1, each Ue Up » Ve v represents an
increasing function Oy TyiD = . Furthermore, if
U=TU(ag***,a, ) meets V=vn[ﬂu,---,ﬂn_1), then the
functions o, and T, ‘interlace'. Thatis, @ < ﬁi Ha

and B1<ui+1 for 0=4is n-2.

These considerations, together with some sort of device to
make the members of each U, and ‘I.rn closed, lead fairly
naturally to the space defined by Fleissnerin [1]. In this space
the pointsof X-(H UK) are the ordered pairs (o> -rv} of
interlacing functions arising from intersecting basic open sets
Ue u, and Ve vy, for some n=1, However, the space

in [1] is not para-Lindeldf, Problems occur in trying to find a
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locally countable open refinement for a cover which uses members of
U, U v, for infinitely many integers n.

To avoid this problem, another technique is used to thin down
the basic open sets ineach y, and Uy and thus limit the
occurrence of nonempty intersections of these sets, The basic open
setsineach u, and YV are made thinner by associating them

with open subsets of a reference space which is T
collectionwise Hausdorff,

4 but not
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Section 3,2. ‘The Combinatorics.

The combinatorial tool developed by Fleissner in trying to build
a T,;, pare-Lindeldf, nonnormal space is that of full sets. In [1]
he introduces full sets and develops their basic properties. Full sets
are very important in proving that my examples are not paracompact ——
some not normal, some not collectionwise normal.  Stationarily full
sets were treated by Charles Mills [4] and Pleissner [1].

3-. Z. ].: _Hﬂtﬂﬂﬂnal Mﬂnmm- Let P = {f - ] —Fﬁlll f is

increasing} . Given ne w, let P ={p:n =u|p is
ing} . P= .

increasing} . Let nl‘il P O
3,2.2: Definition, Given n=1, ¢ and T in

Pn are said to interlace if o(i)< 7v(i+1) and 7T(i)< o(i+l)

for 0=isn-2. |

3.2.3: Notational Definition. Given p in %
and a subset A of {“’wl, let [p:A]l={0eA|pC o},
the set of extensions of p  occuming in A, N

3.2.4: Notational Definition, Given ne w, let A be

a subset of n“’l' Given m=n, let prA={o}m|oeA},
the set of those predecessors (initial restrictions) of members of A

which have domain m, Asin [1], let phA=U pra,
ms=s=n

the set of all predecessors of members of A . D
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3.2.5: Definttion. Let p bein ™o, for some
mew . Theset {p} iscalled O-fullover p, A subset A
of mﬂwl is called l-fullover p i o )m=p forevery
¢ in A and A isuncountable, Given n =1, asubset A
of M™MH, s recursively defined tobe (n#))-full over p if
p™ ™A 4s n.idlover p  and [o:A]  is l-full over o

(i.e., uncountable) forevery o in prota, In other words,

a subset A of m-l-nml is n-full over p 1iff every member of

A extends p and every member of pr"'’A  has uncountably

many extensions in prmﬂ"'lh for 0=i=n-l. Finally,

glven ne w, asubset A of nwl is called n-full if itis

n-full over the empty function ¢, the only member of nwl - U
3.2,5': Definition. let p bein "w, for some

me w. Theset {p} iscalled stationarily O-full over p.

Asubset A of ™M iscalled stationarily l-full over p if

clm=p forevery ¢ in A and {usmllpAaEA} is
*(not only uncountable but also) stationary in @) Given n =1,
asubset A of "M, 45 recursively defined to be
stationarily (n#l)-fullover p if pr"'"A is stationarily n-full

over p and [o:A] is stationarily l-fullover o for
every o in prf™a Finally, given ne w, a subset A
of nwl is called stationarily n-full if it is stationarily n-full

over g . O
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3.2,6: Definition, Iet 7 bein ™u for some
me w. Given n=1 andasubset A of ™M, , the

family (r :peA) Iiscalledan n-full A-systemover 7 if
A is n-ﬁulpwer N and, forevery p and 6 in A, the
intersection of rp and r 0 depends only on the maximal
common predecessor of p and 0. More precisely, the family
{rp:pqﬁ} can be expanded to @ (unique) root family

[ru= ce ptA, dom(co) = m) such that rp Ly =T, when
p and @ in A have o as their maximal common

predecessor., Notice thatif (r_ :p € A) 1isa l-full A-system

p
over T  with root family ”s:r‘ e prA, dom(cg) = m), the
collection {rp[ peA} is a A-system in the usual sense with

root r Finally, the family [rp tpeA) is called an

n -
n-full A-system if it is an n-full A-system over g . O

3.2.7: ILemma. Given me w, let p bein mwl.
Given nje w, let A be a subset of m+n+jm1_ Then

A is (stationarily) (n4)-fullover p iff A = |UJ C

where D 1is (stationarlly) n-fullover p and C is
( stationarily) j-fullover o forevery o in D.

Proof, Let D=pr ™A, andlet C,=[o:A] for
every ¢ in D, O

3,2,8: ILemma. Given ne w, let A be
( stationarily ) n-full, Then An?n, the set of increasing
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members of A, is also (stationarily) n-full, 0

3,2.9: Iemma. Let A be an n-full subset of A for
some n =1, Then there exist mutually interlacing members of A,
o, forevery ie o, such that Uitﬂ)ﬁ crj{n] when 1i# j.
In particular, there are two interlacingmembers o and T of A
with 0o(0)# 7(0); we will use this fact often.

Proof, We proceed by inductionon n. For n=1],
since A is uncountable, pick distinct members of A, 9 for
every ie w. Assume that the lemma is true for n=m, Now
let n=m+l, ILet B=prA. Then B is m-full . By the
inductive hypothesis, there are mutually interlacing members of B,
py forevery 1e w, notwoofwhichagreeat 0. Now let
@=sup py;(m=-1). Forevery ie¢ o, since [p1=A]

le w
is uncountable, find o; in [p;: A] with o (m)> a.
This completes the induction, O

3,2,10: Lemma, Given p in “"“’ml, le¢ A be

( stationarily) n-fullover p forsome n =1, Suppose

A=1LJ Ai. Then A, contains a set which is (stationarily)
E W

n-fullover p forsome 1i¢ w .

i

Proof,  Without loss of generality assume that p = g,
We proceed by inductionon n, For n=1 the result is easy
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since a countable union of countable (nonstationary) subsets of W
is countable (nonstationary). Assume the result is true for n=m.
Nowlet n=m+l. let B=pr"A, Then B is
(stationarily ) m-full , Forevery ie¢ v, let B;= {oe B|
['“All is (stationarlly) l-fullover o} . Forevery ¢ in B,
[o:A] is (stationarily) l-full over o, and so, by the case
for n=1, [majl is (stationarily) l-full over o for some

ie w. Thus B= U B1 . By the inductive hypothesis,
ie w

B contains a set which is (stationarily) m-full for some i e w.

i
For suchan i,A, contains a set which is (stationarily) n-full,

This completes the induction. O

3,2,11: Iemma, Iet A beasubsetof P (Definition

3.2,1) . Suppose that forevery f in F there is a member of
A which restricts f. Then A contains a set which is
( stationarily ) n-full forsome n = 1,

Proof . Suppose not, By inductionon m, define "Im
in P foreach me w such that: (i) nosubsetof A is

( stationarily ) n-full over 7 forany ne w and

m
(4) n Cn when k=m. Notice that forevery me¢ w,

) £ A since, in particular, no subset of A is (stationarily)
0-full over Ny -
First, let T, = ¢ . Since A iscontainedin P,

Mg# A; i.e,, nosubsetof A is (stationarily) 0-full over
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Mg » Also, since no subset of A is (stationarily) n-full, by
definition no subset of A 1is (stationarily) n-full over Mg for
any n=1.

Now, given me w, having defined Tlu, sne, '-"Im
satisfying the inductive requirements, define 7 _,,. Foreach
ne w, since no subset of A is (stationarily) (n+1)-full over
N, the set An;"';;ﬁ = {peP | p extends 7  and some
subset of A 1is (stationarily) n-full over p } 1is countable
(not stationarily 1-full over Tlm] . Therefore the set A mel

= U A™BH 45 countable (not stationarily 1-full over 1_).
Nne @

So choose a_ ‘n ul-{p{m] |pe Am-i-l} such that
@y >N (m-)} ¥ m=1, Letting N, =0"e_ , the
functions PR L flm +1 satisfy the inductive requirements,
iohe romwzees the induction,

Now let f=mké}mnm. Foreach me o, f} m=1,
whichisnotin A, Thus f isin F buthasno
restrictionin A, a contmadiction. Therefore A contains a

set which is (stationarily) n-full forsome n= 1, O

3,2,12:  lemma. Let T bein ““‘ml. Iet A be

n-full over 17  for some n=1, and let rF be finite for
every p in A, Then A hasa subset B such that the
family {rp: pe B) 1isan n-full A-systemover 1.
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Proof,  Without loss of generality assumethat 1 = g.
We proceed by inductionon n, PFor n=1, thisis justthe
usual A-system lemma for finite sets, but a direct proof is included
for completeness ,

Given a l-full set A and a finite set rF| foreach p
in A, wemustfinda l-full subset B of A such that the
family I‘rp :peB) isa l-full A-system. Thatis, B must
be an uncountable subset of A such that the collection
{rp | pe B} is a A-system, By the pigeonhole principle, there
isan m =1 such that rp has m elements for uncount-
ably many members p of A, Therefore assume without loss
of generality that rp has m elements forevery p in A,
We proceed by inductionon m. For m=1 the result is easy.
Assume the result istrue for m= k. Nowlet m=k+l. There

are two cases to consider,

Case I. There is anelement x  with X €1 for
uncountably many members p of A. Iet A'={peh|xerp}.
Poreach p in A' let . AE. {x}. By the inductive
hypothesis there is a subset B of A' such that the family
{sp:pe B) isa l-full A-system, Then the family {rpzpe B)
is also a 1l-full A-system.

Case II, There is no such element x ., Recursively
choose ple) in A foreach « <uy such that
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To(a) n I'F{E} =g forevery ¢< a. Lt B={pla)]a< ml} .
Then the family “p :pe B) isa l-full A-system.
This completes the induction needed to prove the lemma for n = 1,
Assume that the lemma is true for n=m. Nowlet n=m+l,
let¢ D=pA, andlet C =[0:A] foreach o in D. Then
D is m-full and GG is l-fullover o foreach ¢ in D. By
the usual A-system lemma, each Gcr contains an uncountable subset

G'G such that the collection {rp[ peE G:J} is a A-system with root

to - Applying the inductive h;rpnthesis to the family {tg : 0¢ D),
we obtain a subset D' of D such thatthe family (t :oe D') is
an m-full A-system with root family i,'tB :0€ prD'} . The set
C'=U{C,| oe D'}  is almost the desired set B, but it must be
thinned down a little, For any distinct members ¢ and 7 of

pr'B, o N ry is to be independent of the choice of p in [0:B]
and @ in [t:B] .

Enumerate D' as {7(a)|a@ < w} with each member of D'
counted w, tmes. Foreach o in D‘, well order G:r' Now,
forevery a < @i recursively define p(a) € C' along with o(a)=
p(a) } m. Having already defined p(¢) and o(g) for ¢ < a,
let U, =gt.éla (Foertoe)) s ¥ trn U,=¢ , thenlet
o(a) = T(a). Otherwise, let j be the largest integer i such
that tﬂn”l NU, = #. 1Ilet of@ Dbethefirst oe D'

(in the given enumeration) suchthat o extends <(a)}],
of (J+1) hasnot yet occurred as o(g) P (i+1) forany ¢<a,

and t, nU, =g . Nowlet p(a) be the first pEG;{d}
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such that: (i) p# p(¢) forany ¢< a, and (i) {rp-tﬂa)} n

U 5oy = $. Nowlt B={p(a)|a@<w}. Thenthe
E{ o P ﬁ’
family {rp :pe B) isan (m+l)-full A-system with root family

(tg: 6 ¢ prB) where ty = Iy for © ¢ B. This completes
the induction needed to prove the lemma . O
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Section 4,1, A Para-Lindel®f, Nonnormal Moore Space Constructed
Under lum{ml ).

In this section the ideas of Chapter 3 are used with a normal
w,-Cantor tree as a reference space in constructing a new example,
While ml-cantnr trees are not collectionwise Hausdorff, they are
Moore spaces which, if MA{mIJ is assumed, are normal, _

A tree [3] 1is a partially ordered set (T,s) such that, for
every t in T, theset {xe T|x<t} ofallstrict predecessors
of t is well-ordered by <., Foranyordinal a«, the ath level
of T is {te T | the set of all predecessors of t under < has
ordertype a«} . The height of T is the smallest ordinal a such
that the ath levelof T isempty, Anopeninterval J in T |is
of the foom {t} forsome t inthe Oth levelof T or
{xeT| s<x st} forsome s and t in T . The tree topology
on T, whichis always Hausdorff and regular (i.e., T3 ), 1is the
topology generated by the base of all openintervals J in T,

The Cantor tree C is thetree  — “2  of the height w + ],
partially ordered by inclusion and topologized by the tree topology. Let
C' bethe wth levelof C — thatis, “2, I o sksc,
thena k-Cantortree B 1is a subset of C of cardinality x which
containsallof C-C',

4,1,1; Theorem[3]. If w<k <c, let B bea g-Cantor
tree., Then:

(a) B 1is a separable, locally compact Moore space which is
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not collectionwise Hausdorff .
(b) (MA(x)) B is normal. i |

4,1,2: Notational Definition {thml ). Let T bean
w-Cantor tree . Let T' be the wth levelof T, a discrete subset
of T. Given n=1, since |P|=w,, let s :P —T bea
one-one, onto function assigning toeach o in Pn the sequence
sn[ o) of 0's and 1l's. Since T is normal under MA{wll, for
each subset of A of PN, there is a function dA=Pn-m such
that s (o) Pm# s (v)Pm when ceA, tTeP -A, and
m = max(dy(0), dp(7)). u

4,1,3: Notational Definition. Recall (Definition 3,2,1)

that F={f:w — o |f isincreasing} . Nowlet H={f 0|feF},
K= {fhllfeF} . Thus H and K are two disjoint copies of F. i1

4.1, 4: Notational Definition; Let p be in n“’l for some
n=1, Let [p:F] ={feF|fPn=p}. Define [p:H] and
[p : K] analogously. 0

4.1.5: Example {hﬂ{mlj}. Given n=1, Ilet In=
{(o,7)e P2 | (1) o(0) # %(0), (4) o and 7 interlace, and
(1) s(opi)Pn=s(rfi)Pn for 1sisn}; Let I:=

U I . Now let I=1;‘ and X=HUKUI.
m=n

Let X be topologized as follows, Given x in I, {x}
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is open; that is, the pointsof 1 are isolated, Given n=1 and
#*
h in H, the set Un{h]*-[h]'n:H] U {(o,1)e Inl ofn=h |}n}
is open, Similarly, given n=1 and k in K, the set Un{k]=
[kPn:K] Uu{(o,T)e€ I:| Tfn=%k[n} isopen. These open sets
make up the base g for the topologyon X,
The topological space X has the following properties:

(@) X is T1 and zero-dimensional and hence also reqular and
in fact completely regular,

(b) X is a Moore space with a o-disjoint, o-locally

countable base,

(c) X is para-Lindeldf,

(d) X is not normal,

(e) X is metacompact,

(f) X is countably paracompact.

Frequently, a verification involving points in H and the
corresponding one involving points in K are totally analogous, In
such cases, without any further mention, only one verification will be

given.

(a): First, we see that X is T,; i.e., singletons are
closed. Foreach x in X, {x'} separates any distinct point x'
in I from x, Givenapoint x in In. anypoint h in H can
be separated from x by Un+lfh] . Now considera point h in H.
Any other point h' in H canbe separated from h by U, (h')
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where n is Jarge enough sothat h' }Pn# h)}n, Also, forany k
in K, even Ul{k] separates k from h,

In addition, the given basic open sets are closed, Each {x}
containedin I 1isclosedas X is Tl . Now, given h in H
and n=1, «consider U= Un{h). Each x in 1-U is
separated from U by {x}. Given h' in H-U, U (h')
separates h from U where m is large enough so that h'[‘m #
hpm (e.g.,, m=n),. In separating k in K from U, there
are two possibilities. If k(0) = h(0), then Ullk} and U are
disjoint,  Otherwise, since k| 1#h |1, find m large enough
sothat s)(k [ 1) Pm# s;(hf1)Pm; then U (k) and U are
disjoint. Thus the given base 8 isclopen; so X is zero-

dimensional,

Since X is Tl and has a clopen base, itis I, and in
fact Tychonoff,

(b): Iet n=1 begiven. lLet @) ={U (h)|he H},
1
gL={U (®|keK}, and ¢4={{x}xeI-UuUgy}. Let

G = QL UG UGS .  Eachcollection @S is pairwise disjoint
for e=0,1 or 2, Since the base 8 =0 Qn, B isa
nz1l
o-disjoint base. Since the collection {qn| n=1} of open
covers of X is a development for X, X isa Moore space.
Finally, we verifythat g 1is o-locally countable since each
qn is locally countable as witnessed by Grsl * lei n=1 be

given. Clearly, foreach x in I, {x} meets at mosttwo
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members of Gp - Also, foreach x in H UK, Un 41 (x) meets
only countably many members of Gy, * To verify this, consider

U= Um_l[h) where he H. U meets exactly one member of

q?‘ — namely, Un(h) — and no members of qf.‘ . Now suppose U
meets Un{k) where ke K. Choose (og,t) in U N Un{k] .
Then h]P(n+l)=ocpP(n+l) interlaceswith TP (m+1). So
there are only countably many possibilities for tMPn=k 'n, which
determines Un{k] for k in K, Thus U meets only countably
many members of #1 and hence of Gp -

(c): To verify that X is para-Lindelséf, let V¥ be an open
coverof X, Foreach f in F, let c(f) be the smallest
integer n suchthatboth U (£70) and U (£ 1) are contained
in members of v. Given n =1, let A ={peP |[c(f)=n
for some (every) f in F which extends p}, or equivalently A =
{ftPn|feF and c(f) = n}; let d :P —w be a function
separating A~ from Pr= An as in Definition 4. 1.2, Finally,
foreach f in F, let d(f) be the largerof c(f) and
1‘3:’%&; d, (f M), For convenience, extend the functions ¢ and
d from F to FUHUK by letting c(x)= ¢(x Pw) and
d(x) =d(x |} w) foreach x in H UK.

Foreach x in HUK, let W(x)= Uc{x}{x] -
{(o,7) e I:tx}[si{a]‘ 1) Pdx) # s, (tP1) Pd(x) for some is c(x)} .
To verify that each W(x) is open (and hence clopen), consider
W(h) where he H. Clearly W(h) n 1 isopen. Foreach h'
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in H, h'e Wh) iff h' }c(h) =h}c(h). Moreover, if
h' € W) n H, then Ud‘h]{h']CW{hJ . Also notice that for h
in H, h)c(h) determines c(h), d(h) and W(h); the same
holds for k in K. Nowlet 10={W(h)|heH), w = (W(K)]
ke X}, and b= {{x}lxel-urmu Uw)}. Let u be the open
cover °U 1'U u:rz, which refines V.

To see that |y is in fact locally countable, we first investigate

the amount of intersection between its members, Both u;ﬂ U mz and

u;,l u u-,-z are pairwise disjoint collections. Now suppose  Wih)

meets W(k) where he H and ke K, Iclaim that c(h) =

c(k). To verify this, supposethat c(h) # c(k). Without loss

of generality assume c(h) < c(k), and let n=c(h). Choose

(6, T) in W(h) n W(k). Then o[ ne A but T Mne P -A.

So an{arn}rmﬁsn['r[‘n}[‘m where m = max(d (o} n),

dn{-rl‘n}}. If m=d(cPn), then m=dh), and so

(o 1) £ Weh). Otherwise, m=dn{1‘]"n], ms dn{-r[‘n). m =d (k),

and so (g t)f W(k). Thisis a contradiction, and therefore c(h) = c(k).
We now verify that | is locally countable, Given any x

in I, {x} meetsat mosttwo members of . Foreach x in

HUK, let Z(x) bethe openset W(x)n Uc[xj-l-l (x) . In

checking that each Z(x) avoids all but countably many members of

b, consider Z(th) where he H and cfth)=n, Z(h) meets

just one member of u;ﬂ U hz — namely, Wih). Because Z(h)

refines W(h), every member of I which Z(h) meets lies

in W, — where Iy ={W(k)|keK and c(k)=n} — andis
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therefore contained in a member of qln . But since Z(h) also
refines Un H{h} , it meets only countably many members of qll_l,

each of which contains at most one member of m; . So Z(h) meets
just countably many members of u,l and hence of |v. This completes
the proof that | is locally countable and that X is therefore para-

Lindeldf,

(d): To verify that X is not normal, let ‘H’l and ‘Fz be
arbitrary open sets which contain the disjoint closed sets H and K,
respectively, We will see that Vl and Vz intersect and thus that
H and K cannot be separated by disjoint open sets, With V| the
open cover {'Jl, Vz, I} of X, let c(f) foreach f in F
and An foreach n =1 beasintheproofof (c). [Let
A ﬂnLI'*..JI An . Since every f in F has arestrictionin A, by
Lemma 3,2,11, choose n=1 sothat A  has an n-full subset,
and let B be such a subset, Define the '"matching' function

“zj by letting

M:B - ("2)" (that is, the set of n-tuples on
M(p) be the n-tuple (sy(p F1)fPn,ee., s,(p [n) each p in
Bis Since there are only finitely many possibilities for M (p), by
Lemma 3, 2,10, let C bean n-full subset of B on which M

is constant, Now, by Lemma 3.2.9, find two interlacing members
g and v of C with o(0)# 1(0). Then the point (g, v) les

in Vl N Va6 Therefore X 1is not normal,

(e): We now verify that X is metacompact, (Given any

open cover  of X, the locally countable open refinement
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constructed in the proof of (c) is also point-finite, However, while
the ml-ﬂantcr tree sequences are necessary in proving that . is para-
Lindeldf, they are not important here. We can just as well find a
point-finite open refinement | for | more simply. Define the

function ¢ on FUHUK asintheproofof (¢). Then let

e (U@ | heH), W= (U 0] kek}, amd 2=

(x| xe1-U’uul). et u be the open cover

lyu2, refining v. Both w0 uu? and u'uu? are

w U u
pairwise disjoint collections. Since each pointin H UK lies in
exactly one member of yu and each point in I lies in at most two,

u is indeed point-finite . Thus X is metacompact, Notice that
in this proof we could have defined the function ¢ independently on

H and K.

(f): Finally, to verify that X is countably paracompact, let
v be a countably infinite open coverof X. Index V| as
{V1| i=1}., Foreach f in F, let c(f) be the smallest
integer n suchthatboth U (f70) and U (f 1) are contained
in sets Vi with i =n, With c(f) sodefined foreach f in
F, goon to define A.n and dn foreach n=1; d(f) for each
f in F; and c(x), d(x), and W(x) foreach x in HUK
accordingly as in the proof of (c). Also let u;un, ltl, and W% be
as in the proof of (c). As before, each W (x) is open, and W(x)
cannot meet Wi(x') where x. and X arein H UK, unless

c(x) = c(x') .
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Foreach n=1, let w; =\U{W(x)| xe HUK and c(x)
n}U{xel|{x}e mz and xe€ V, -.l-I::Jn ‘Ji} " Then the open
cover 'u;*: {w:nVﬂnal and isn} is a locally finite refine-
ment for . In fact, r,n* is star-finite; thatis, each member

of m* avoids all but finitely many members of m:hll . [:]

In this cxample, the ml-Gantm' tree sequences are essential in
getting X to be para-Lindel8f and also countably paracompact. For
every i=1, the set Pi is identified with the top level T' of
the ml-Ga.ntor tree T by the function s,.

Iet h in H and n=1 be given, Any ''nth level" open
neighborhood of h -- that is, one whose intersection with H yK is
[hPn: H] and whose intersection with I 1is determined by its
intersection with I, — can be thinned down by an association wit:.h
the open neighborhoods of si[hrij in T foreach is=n, More
precisely, the nth level open set Un[h] is associated with the
open interval {teT[sithri]fnstﬁsi{h[‘”} in T for each
i=n. Butif m>n, a smaller nth level open neighborhood of
h, associated with the open interval {teT [aith M)Pmsts s, (h M)}
in T foreach isn, s U (h)-{(0,7)el |5 (o}1)}mf
s;(t}1)Pm forsome 1i=n}. Similary, le¢ k in K and
n=1 begiven. Any nth level open neighborhood of k — that
is, one whose intersection with HU K is [k} n:K] andwhose
intersection with I is determined by its intersection with I, — can
be thinned down by an association with the open neighborhoods of
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si{kri] in T foreach isn.

Because the ul-cantor tree T {is normal, this thinning down
provides enough separation to make X para-Lindel8f., For it gives
a handle for controlling the "levels' of intersecting open sets. At the
same time, T is not collectionwise Hausdorff since no uncountable
subset of the discrete set T can be separated by disjoint open sets.
Therefore, certainly, the finite sequences  s,(p Pi)Pn with isn
cannot distinguish uncountably many members p of any given Pn
from each other; moreover, uncountably many of them will agree on
all the sequences sitpfi}rm with i =n, no matter how large
the integer m is. In view of this, the thinning down provides little

enough separation so that X remains nonnormal,
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Section 4, 2, A Normal, Para-Lindeldf, Collectionwise Nonnormal
Moore Space Constructed Under miulj .

Now, by embedding the techniques used in the previous section
in a slightly different picture, we construct another example, In this
topological space there is only one copy of F, and the pairs of inter-
lacing partial functions, which provide interesting intersections between
open sets, are unordered pairs rather than ordered pairs.

4.2.1: Example {Mh{ul)). Given n=1, let In=
{{s,-r}cpnlm o(0) £ ©(0), (i) o and T interlace, and
(iii) ai{al‘ijf'n=51[1'r1)rn for ls=isn)}; let I:=

0
mL'anIm' Now let j|‘=I1 and Y=FuJ.

Let Y be topologized as follows., Given y in J, {v}
is open; that is, the points of ] are isolated. Given n=1 and
f in F, the set T.In{f}=[f[‘n:P]u{{cr,-r}eI:[u]‘n= ffn or
TPn=f]Pn} isopen. These open sets make up the base g for

the topology on Y .,
The topological space Y has the following properties:

(a) ¥ is T 1 and zero-dimensional and also normal,

(b) Y is a Moore space with a o-locally countable base but
but with no o¢-disjoint base.

(c) Y 1is para-Lindeldf,

(d) ¥ is not collectionwise normal,

(e) Y is metacompact,

(f) Y is countably paracompact.
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In the discussion of this example, the topological space X
referred to is that of Example 4.1.5.,

(a): Provingthat Y is T1 and that the base g for Y
is clopen is very much like proving the analogous result for X . For
example, consider the basic open set Us= Un{f} where n=1 and
fe F weverifythat U isclosed. If vye J-U, then {y}
separates y from U, In separating f in P-U from U,
there are two possibilities, If f(0) = £(0), then Um{f'] nvu
is empty where m is large enough sothat f fm# flm (e.q.,
m=n). Otherwise, since f [1# f|1, find m large
enough sothat s (f }1)Pm# s(ff1)Pm; then U (f)n U
is empty.

To verify that ¥ is normal, let A and B be disjoint closed
subsets of ¥ . Without loss of generality we assume that both A
and B are containedin F,  For, ifnot, let A'=ANF and
BB=BnF. If U' and V' aredisjoint open sets containing A'
and B', respectively, then the open sets U= U'-BU(ANJ) and
V=V -AUu(BnJ) aredisjointandcontain A and B, respectively,

Now, foreach f in A, let c(f) be the smallest integer
n such that Un{ﬂ NB is empty. Similarly, foreach f in B,
let c(f) bethe smallest integer n such that Un{f} NA is empty.
let n=1 begiven., Let Anz{frn[feh and c(f) = n} and
B,={f}n|feB and c(f)=n}. Let d :P --w bea function
separating A from A An and B from P =B for

example, let dn be the maximum of two functions dh and dﬂ
n n
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guaranteed to exist as discussed in Definition 4,1.2, Finally, given
f in AUB, let d(f) be thelargerof c(f) and
1;‘1’&}&1&[‘1]. Let Uzu{Udm{foEA} and V=
{Udm[f}[feﬁ}. Then U and V are open sets which contain
A and B, respectively .

Certainly nopointof F canbeinboth U and V since
d(f)=zc(f) foreach f in AyUB. Toseethat U and V are
disjoint, supposethat {o,T}e€ Ud{f}m nlfd[ft]{f') for some f in
A and f in B. We assume without loss of generality that
cifysc(f'), olc@E=f)c(f), ad <|c(f)=1f Pc(f). Let
n= c(f). Then a[‘nehn but TP“EPn'An' Thus
sn{u[*nll‘mf- sn[-r]‘n]]‘m where m = max{dn{u[‘n),
dn{-r[‘nn. If m=dn{arn], then msd(f), andso
{0, 7} £ Uy . Otherwise, m=d (7[n), ms=d(f), and
so {0, 7} £ Uy (f). Thisis impossible, and therefore U and
V are disjoint, 8o Y is T,.

(b): Proving that Y 1is a Moore space with a o-locally
countable base is very similar to proving the same result for X, Given
n=1, let gr={(U®|feF), & ={{y}|lyel-Ug ),
and @, = qlnuqﬁ. Since the collection {qnlnzl} of open
covers of Y 1is a development for ¥, Y is a Moore space, Also,
each G, 1is locally countable as witnessed by Gl ? the argument
verifying this matches the one used to verify the analogous result for X,
Thus the base 8 is o-locally countable since 8 = U 4 Gy -

n=
Unlike X, however, Y <doesnothavea o-disjoint base; this
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is shown by the method used to prove that Y is not collectionwise

normal ,

(c): The proof that Y is para-Lindeldf follows the lines of
the proof that X is para-Lindeléf, Let Vy be an open cover of Y.
Foreach f in F, let c¢(f) be the smallestinteger n such
that Un (£) is contained in 2 memberof ;. As before, for each
n=1, let A.n={ffn[f£F and c(f) = n}; let d :P —o
be a function separating An from En - An as in Definition 4, 1, 2,
Foreach f in F, let d(f) be thelargerof c(f) and

l:“g{‘ﬂ d, (f}1).

Foreach f in F, let W(f)= U () -{{c,1} e sz[
siiﬁfij[‘d{ﬂ;! si{f[‘i}[‘d{i} forsome is=sc(f))}. Now let

b = {Wif)|fe F}, Wl = {{y}]| v e r-uly, and finally

b= 'y ¥%,  Pollowing the proof for X, we see that each W(f),
which is detemmined by £ | c(f), is open and that for any f and

f in F, W() cannotmeet W(f) unless c(f) = c(f'). We
see as well that the open cover |5, which refines |, is locally
countable ; foreach f in F, the open set Z(f) = W(f) nUc(f) +1‘ﬂ
witnesses the local countabilityof |5 at f.

(d): The proof that Y is not collectionwise normal resembles

o
{feF|£(0)=a}. We check first that each Pa is closed and

the proof that X is not normal, Foreach a< @y, let F_=

that the collection = {Fala < ml} is discrete, Givenany vy

in J, {y} meetsnomemberof 3F. Givenany f in F, let
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a=f£(0); then fe¢ Fo» which is the only member of .F met by
U,y () .

To verify that the collection J cannot be separated by disjoint
open sets, let {‘U’m | @< wl} be an arbitrary collection of open
sets with Vn NP = Pa forevery a < w) We will see that this
collection is not pairwise disjoint , With 1y the open cover
{(Vyle<w}u{l} of ¥, let c(f) foreach f in F and A
foreach n=1 beasintheproofof (c). Nowlet n=1,
BCA_, M:B— ("2)", and CCB be as in the proof that X
is not normal , By Lemma 3,2.9, find two interlacing members o
and v of C with o(0)# 7(0)., Then the point {go, 1t} les

in 'Ju{u} n U’T ) * Therefore Y is not collectionwise normal.

(e): The proof that ¥ is metacompact is just like the analogous
proof for X, Givenanopencover |1 of Y, the locally countable
open refinement |z constructed in proving (c¢) is also point-finite,
More simply, however, with the function ¢ on F defined as in the
proof of (c), let y'= {Uc{ﬂtﬂlfe F}, u? ={{y}lye7J-

U hl} , @and wus= ul U us. Then 1y is a point-finite open
refinement for |; eachpointin F lies in just one member of y,
and each point in J lies in at most two.

(f): Just as we did for X, we now modify the proof that Y
is para-Lindeldf to prove that Y is countably paracompact, Given a
countably infinite open cover U ={V1[1 =1} of Y, foreach f
in F, let c(f) be the smallest integer n such that Untf) is
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is contained in a set V, with i=n., Define A and d  for
each n=1; d(f) and W(f) foreach f in F; and W' and
2 accordingly as in the proof of (c). Once again, each W(f)
is open, and c(f) = c{f'} if W(f) meets W{f' ) forany f and
f in F.

Poreach n=1, let W:=U{W{f)|fel’ and c{f}‘= n}
Uy e J| (v} e w2
b*= {p, NV;[n=1 and is=n} isalocally finite (in fact star-

finite) refinement for V. O

and yeV - 1lgu’lu'l] . The open cover

L




Section 5.1, A Para-Lindeldf, Nonnormal Ts-Epace.

In this section we construct a space X like that of Section 4, 1.
For the two examples in this chapter, we use Bing's G as a reference
space, just as we used a normal wl-Cantor tree in Chapter 4, Without
any extra axioms for set theory, Bing's G isa T‘1 space which is
not collectionwise Hausdorff, Therefore the constructions in this
chapter do not require any special set-theoretic assumptions., However,

o |

like Bing's G, both examples in this chapter have character 2 ",

5.11: Definition of Bing's G[3]. Let S= P(w) and G = 52,

the set of all functions from S8 into {0,1} . Forany a< w, let
g, * 8§ —= 2 be the characteristic function for «; that is, for any
A('_*ul, gnmj=1 iff aeA, Let G'={ga[u<wl}. To
topologize G, letallthe pointsof G -G be isolated, Also 4
givenany ACw and e=0 or 1, theset Uﬁ,en{gsG[
g(A) = e} 1isopen. The singletonson G-G'  together with
all the open sets UA.,& provide a subbase for the topology on G . []

5,1.2: Theorem[3]. Bing's G is T, but not collection-
wise Hausdorff; no uncountable subset of the discrete set G' can be
separated by disjoint open sets . O

5.1.3: Notational Definition. Givenany n=1, let Bn

= P(P), and let T, be the set of all finite subsets of 1l§'-Jn Sp

let F, H,L and K beasin Chapter 4, Alsolet [p:F], [p:H],
[p:K] be as in Chapter 4, where Peﬁwml. N
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5,1,4: Example. Foreach n=1, let In={{u,1',r]£

PAXT_| () o(0)# w(0), and () o and 7 interlace}; let

I's= U I . Nowlet I=I" and X=HUKUI.

% m=n

Now we topologize X, The points of I areisolated, For
each n=z=1, h in H, and t in T, let Un{h,t)n[h]‘nzH]
U{({g 5, r)el | (1) oPn=nh]n, and (i) givenany Eetns,
forsome isn, Eer iff h]ie E}; these sets are open.
Similarly, foreach n=1, k in K, and t in Tn" let
U (kt)=[kPn:K] U{(o, 7,7)el | @) tPn=k]n, and
givenany EetnS, forsome i=n, Eer Iiff k[MieE};
these sets too are open, The singletons on I together with these
open sets make upthebase B for X, If m=n, notice that the
intersection of the basic open sets Um{x,t} and Un[x,t'] is

U (x,t ut'), and U_(xt) contains Un{x,t'} if tct'.
The topological space X has the following properties:

@) X is T y @and zero-dimensional and therefore also regular
and furthermore cmnple;taly n;qular.

(b) X has character Zml: therefore X is not a Moore
space and does not have a o¢-disjoint or a o-locally countable
base.

(¢) X is para-Lindeldf,

(d) X 1is not normal,

(e) X is metacompact.

(f) X is countably paracompact.




43

In the discussion of this example, X(4) will refer to the space
X uf Example 4,1,5,. As inthe discussion of X(4), two correspond-
ing verifications involving points of H and of K, respectively, will
often be represented by just one of them.

(a): X is Tl exactly as X(4) is; just replace any basic
open set U (x) in X(4) by the basic open set Un{x,ﬂ] in X.
To see that X is zero-dimensional, we verify that any basic open
set Us=1U(ht), where heH and {h[1l}et, isclosed,
The points of I-U andof H-U canbe separated from U just
asin X(4) — using U_(h',f) instead of Um{h‘j for h' in
H-U. In separating k in K from U, there are two
possibilities.  If k(0)=h(0), then Uy(k,#) NU is empty
~— again corresponding to the situation in X (4). Otherwise, since
kPM1#gh )1, Uy(k, {h['1}) nU  is empty. Therefore U is
closed., let B8' consist of all singletons on I together with those
members Un(x, t) of 8 where {xpllet. Then g' is
also a base for X and is clopen,

Since X is T 1 and zero-dimensional, itis Ta and further-
more Tychonoff ,

[ ]
(b): X hascharacter 2 » ateachpointof H UK since

that is the size of each 8§ Although X therefore is not develop-

n -
able and does not have a o-disjoint or a o-locally countable base,

it is useful to reflect what countable structure X has, For each
n=1, let qﬂ = {U,(h,#)|h ¢ H}, Qfﬁ {U (kg ke K},
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2= {x}|xeT-UQuUaL), and g = ugiugd. Each
collection S  is pairwise disjointfor e=0,1, or 2. Asin
X(4), each Gn is locally countable, as Gl testifies, But

in this example, U g is not a pase for X,
n=1"1

(c): Showing that X is para-Lindeldf resembles showing that
X(4) is para-Lindeldf. Let y Dbe an opencover of X, For each
f in F, let c(f) be the smallest integer n such that both
Un(fAﬂ,t} and 'Un[fAl,t] are contained in members of
forsome t in T . Forany n=z=1, let Ana{frn[c{f.)=n};
foreach p in A, choose t  in T sothat both Un(:" 0,t)
and U ( £ 1, t,
[p:F]. Forconvenience, foreach x in HUK, let ¢(x) =

) refine members of y for some (every) f in

c(xPw) and t{x]:tp, where p=xec(x). Also, for every
x in H UK, let t'{x)=t{x)u{A1[1515c{x)}.

Foreach x in H YK, let W(x) be the open set
Ug)(®t ). Then h}c(h) determines W(h) for h in H;
similarly, k [c(k) determines W(k) for k in K. Now let
w={Wh)|heH}), w'={WK|keK}, and 2= {{x}|xe
I-U®uwh) .  Let be the open cover " | mlumz,

refining V.

The possibilities for intersection between members of |3 show
a picture like that in X(4). Both 1’ yuw® and B U RS are
pairwise disjoint collections, Now suppose that Wi(h) meets
W(k) where heH and ke K. To see that c(h) = cik),
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suppose this is false. @ Without loss of generality assume that c¢(h) <
c(k), andlet n=c(th). Choose (o,7,r) in W) n W(k).
An is inboth t'(h) and t'(k). Thus A er since hlne An'
but A £ r since kfngA . This is of course impossible,
and so c(h) =c(k).

Now we verify that |z is locally countable, Forany x in
I, {x} meetsat most two membersof W. Forevery x in H UK,
let Z(x) bethe open set W(x) n Uc{le{x, g). Tocheck that
each 2Z(x) avolds all but countably many members of I3, consider
Zh) where he H and c(h)=n, Z(h) meets just one member
of mu u u;z — namely, W(h). Because 2Z(h) refines W),
every member of u;l met by Z(h) les in h:'l. — where lul =
{W(k)|ke K and c(k) = n} — and is thus contained in a member of
Q;. But since Z (h) also refines Unﬂ[h,ﬂ] . it meets only
countably many members of qi, each of which contains at most one

member of m}l . Thus Z(h) meets only countably many members of

u;l and hence of |p. So W is locally countable, and therefore X

is para-Lindeldf,

(d): To verify that X is not normal, let \Fl and Vz be
arbitrary open sets which contain the disjoint closed sets H and K,
respectively. As 1::1 X(4), we will see that ‘Ul and \fz intersect
and thus that H and K cannot be separated by disjoint open sets,
With 1\ the open cover {V,, Vz, I}, let c(f) foreach f in
A.n foreach n=z1, and t for each p in some An be

p
as inthe proof of (c). Let A=n"glAn. Since every f in
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F has a restriction in A, by Lemma 3,2,11, choose n=1 anda
subset B of An sothat B is n-full, Now, by Lemma 3,2,12,
find a subset B' of B so that the family {tp: pe B') isan n-full
A-system with root family (tg: 6 e prB'). Foreach p in B',

let {Eetpnsllp[*ieE}, the set of those members of

= U
rP i=n
t on which p votes yes. Define the '"matching" function

[o)
M:B'—-P{tﬁ} by letting M(p)=r_ Nty , the set of those

members of tﬁ on which p votes :as, for each p in B'. Since
there are only finitely many possibilities for M(p), by Lemma 3, 2,10,
let C bean n-full subsetof B' onwhich M is constant; thus
every p in C votes the same way on the members of tﬁ . Finally,
by lemma 3,2.9, find two interlacing members ¢ and v of C

with 0(0)# 7(0). Let r=r_U r.» Inverifying that the point

(g —r,::]evln‘i , consider E in ta. Suppose Eerq_.

Then Eetaan, a subset of ta”t-;”ﬁ' So Eer,rntﬁ=

o
Similarly, given E in t'r’ Eer iff Ee r. iff t wvotes yes

rant’. Thus Eer iff Eer iff o wvotesyeson E,

on E, So,forany h in [o:H] and k in [7:K], (g 7, 1)
belongs to Un{h'ta]nun{k't*r) and in tum to \fln"f . Therefore

X is not normal.

(e): We now use the proof of (c) to show that X is meta-
compact, as in Section 4,1. Given any open cover y of X, the
locally countable open refinement | constructed in proving (c) is
also point-finite, But more simply, let the function ¢ on F Y H YK,
each An' each tp , @andthefunction t on HUK beasin
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the proof of (c) . Thenlet U’ = {U_q (h, t)|he H} and
u!= (U (k t)| ke K}.  Define u? and y accordingly
as in the proof that X(4) is metacompact, and continue as in that
proof, Notice that we could just as well have defined functions ¢
and t independentlyon H and K.

(f): We also use the proof of (c) to show that X is count-
ably paracompact, as in Section 4,1. For a countably infinite open
cover 1.r={v1[ial} of X, foreach £ in F let c(f) be
the smallest integer n such thatboth U (£ 0,t) and U (" 1,t)
are contained in sets V, with i=n for some t in T .

Define each An ; each tp; and c¢(x), t(x), and W(x) for
each x in H U K accordingly as in the proof of (¢). Now continue

as in the proof that X(4) is countably paracompact. 0

In this example, the members of the sets T  are essential in
getting X to be para-Lindeldf and also countably paracompact. For
each i=1, identify P, with the set G' of characteristic functions
in Bing's example G by a one-one, onto function Sy 3 G' plays the
same role here that T', the top level of the ml-cantm' tree T, plays
in the example X of Chapter 4.

let h in H and n=1 begiven. Any "nth level' open
neighborhood of h — one whose intersection with HUK |is
[hln: H] and whose intersection with I is determined by its
intersection with % — can be thinned down by an association with

the open neighborhoods of s;(h}i) in G foreach i=n. More
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precisely, given t in Tn' suppose that t n Si = i:1 for each
i=n,., PForeach i=n, the nth level open neighborhood Un(h,t]
of h is associated with the open naighhc.uﬂmod ('1{1:!15:ll nl Ee t, and
hPMAEYN MU, (|Ect, and hPieE} of hPM in G; we
take the intersection of an empty collection to be the entire space G .
Similarly, given k in K and n=1, any nth level open
neighborhood of k can be thinned down by an association with the open
neighborhoods of si{krii in G foreach 1s=n., If the neighbor-
hood in G associated with hpMi and tn S; is disjoint from
that associated with k i and t' NS, forsome isn, then
U, (h,t) and U (h,t') are disjoint,

Since the space G is nommal, this thinning down provides enough
separation to make X para-Lindeléf. For, as in Chapter 4, it
provides a way of controlling the 'levels" of intersecting open sets.

On the other hand, G is not collectionwise Hausdorff since no un-
countable subset of the discrete set G' can be separated by disjoint
open sets, Therefore a collection of members 1:1,;l of Tn cannot
distinguish between uncountably many functions p in any given Pn .
So the thinning down does not provide enough separation to make X

normal,
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Section 5.2. A Collectionwise Nonnormal Topological T 4‘35"“3 .

Now we use the techniques of the previous section to build a
topological space like the space Y of Section 4.2, Once again,
this construction does not require any extra set-theoretic assumptions.

5,2,1: Example. Foreach n=1, let J = {({g 1,71
where {o,7}CP  and reT | (i) o) # 7(0), and (1) o
and 7 interlace}; let ]': w Kb T o Nowlet J= Ir

mzn
and Y=FUT,

Now we topologize Y. The points of J are isolated., For
eacch n=z=1, f in F, and t in T , let U (f,t)=
[£}n:F] U{({o,7},r)eT | (1) ofn=fPn or TPn=f]n,
and (ii) given Eetnsi forsome i=n, Eer iff
fPie E}; these sets are open. The set of all singletons on J
together with these open sets make up the base @ for Y,

The topological space Y has the following properties:

(@) ¥ is T, and zero-dimensional and also normal.

(b) Y has character zwl; therefore Y is not a Moore space

and does not have a o-disjoint ora o¢-locally countable base.

(c) Y is para-Lindeldf.

d Y

(e) Y is metacompact,
Y

(f)

is not collectionwise normal,

is countably paracompact,

In the discussion of this example, the topological space X
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referred to will be that of Example 5.1.4. Also, Y(4) will refer to the
space of Example 4,2,1,

(a): Y is Tl exactly as ¥Y(4) is, Showing that ¥ is zero-
dimensional is very similar to showing the same result for X, Consider
U=U(f,t) where n=1, feF, teT , and {f} 1} € t; we verify
that U is closed, Given y in J-U, {y} separates y from U as in
Y(4) . In separating f in F-U from U, there are two possibilities.
If £'(0) = £f(0), separate f from U as in Y(4) — using T.Tm{i',ﬁ}
instead of Um[f'] . Otherwise, since f M1 £ 1], Ullf',{frl}} nvu
is empty. Let @ consist of all singletons on J together with those
members U _(f,t) of @ where {f}1} ¢ t. Then g' is a clopen base
for Y,

To see that Y is normal, let A and B be disjoint closed subsets
of Y. As in the analogous proof of ¥(4), we assume without loss of
generality that both A and B are contained in F, Foreach f in A,
let c(f) be the smallest integer n such that Un( f,t) avoids B for
some t in Tn, and let t(f) be sucha t. Similarly, foreach f in
B, let c(f) be the smallest integer n such that Un{ f,t) avoids A,
and A for some t in Tn' and let t(f) be sucha t, Foreach n=1,
let A = {ffn|fecAand c(f)=n} and B ={f['n|feB and c(f) = n}.
For each f in AUB with c(f) = n, let t'()=t(f)u{A|1sisn) U
{B;| 1=isn}. Now let u=u{uc{ﬂ{f,t'{fmfem and V=
U{Uc{fjff,t'{f]) | £€B}. Clearly U and V are open sets which
contain A and B, respectively.
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Certainlynopointof F canbein UNV. Toseethat U
and V are disjoint, suppose that y = ({0, t},r)eUnV. Then
y € Ugyplf t'{ﬂ}nuc{fs}(f', t'(f)) forsome f in A and f in
B. Without loss of generality assume that ofc(f) = f[c(f),
Tl‘ﬂ{f.]=f'l't:[fl], and c{f}sc{f']. let n=c(f). Then
A belongs to both t'() and t'(f). So A er since
frne.!-’i.n, but A.nf.'r since i'[np.’f-\n. Since this is
impossible, U and V are disjoint, Therefore Y 1is T4.

W
(b): Y haschamacter 2 1

at each point of F, Although
Y therefore is not developable and does not have a o-disjoint or a
g-locally countable base, we can reflect the countable structure that Y
does have, Givenany n=1, let q:‘ = {Un{f,ﬂﬂf € F}, qi =
{{y} |y e ]-uq;}, and Q= q;u q:. Once again, each
G, is locally countable, as (., testifies. However, as for

U i ‘
X, nzlq“ s not a base for Y

(c): We now modify the proof that X is para-LindelSf to prove
that Y is para-Lindelf, as in Chapter 4. Given an open cover
of Y, foreach f in F let c(f) be the smallest integer n such
that Unff,t] is contained in a member of | forsome t in T

n
Once again, forany n=1, let %:{t}n]fsr and c(f) = n};
foreach p in An choose tp in Tn so that Un{f,tp]
refines @a memberof |y forany f in [p:F]. For convenience,
foreach f in F, let ¢t(f)=t where p=f]c(f); let

p
t@)=tHu{a|lsiscH}.
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Now, foreach f in F, let W (f) be the open set
Upyy (5 t'(f)),  whichis determined by £ c(f). Define u', w2,
and the open refinement |y for V¥ as in the analogous proof for Y(4).
As in the proof for X, W(f) and W(f') are disjoint if c(f) £ c(f')
where f and f arein P, As a result, b is locally count-
able; foreach f in F, the openset 2(f) = W(f) NV (5 g)

witnesses the local countability of 1 at £,

(d) - (f): The proof that X is not normal can be modified to
prove that Y is not collectionwise normal, just as in Chapter 4; this
is left to the reader, Similarly, the proofs showing that X is meta-
compact and countably paracompact can be modified to prove the same
results for Y, just as in Chapter 4, O
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Section 6,1, Properties Found in T 3 Para-Lindel&f, Nonparacompact
Spaces.

By examining the examples of the previous two chapters and making
some simple modifications, we can investigate which topological proper-
ties can go along with being T, and para-Lindeldf but not paracompact,
These four main examples will be referred to, in order, as X(4), Y(4),
X(5), and Y¥Y(5). Earlier notational definitions still hold, except
where they are specifically overruled ,

X(4) and Y(4), the examples using a normal ml-cantor tree,
depend on the existence of such a tree; for example, they can be con-
structed under MA( w ) but cannot under CH . However, in their
favor, these spaces are first countable, In fact, each of them is
developable and has a o-locally countable base; only X(4) has a
o-disjoint base. On the other hand,. X(5) and Y(5), the examples
using Bing's G, are 'real" examples. But these spaces fail to be
first countable, In fact, they both have character zul . The two
nonnormal spaces, X(4) and X(5), are screenable; for each, the
point-finite open refinement constructed in showing metacompactness is
also o¢-disjoint (in fact the union of two pairwise disjoint collections).
The two normal spaces, Y(4) and Y(5), are not screenable; for
each, the open cover used in showing that the space is not collection-
wise normal has no o-disjoint open refinement. While all four spaces
are completely regular, none are collectionwise normal, All are meta-

compact and countably paracompact,
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An elegantly simple technique devised by F. Burton Jones uses
a space which is regular but not normal to construct a new space which
is regular but not completely regular, By applying this technique to
the spaces X(4) and X(5), we get para-Lindeldf T3—sp&ces which

are not completely regular,

6.1.1: Construction (Jones [T]). Let X be a topological
space which is regular but not normal, Accordingly, let H and KX
be disjoint closed subsets of X which cannot be separated by disjoint
open sets. Let N be the set of natural numbers {1, 2, *++ } with
the discrete topology. Let Z be the identification space XX N/~
where the equivalence relation ~ on XX N is generated by the rule
(x,n)~ (x,n+l) if: xeH and n iseven, or xe K and
n is odd. Finally, let 2 =2'y{p} where pf2 . For
eacch n in N, let X = {(x,n)]x € X}/~ , which is homeo-
morphicto X. Totopologize 2Z, let UC Z' beopenin 2
iff U isopenin Z', orequivalently iff U n }{n is open in xn
foreach n in N, Also, if UCZ with pe U, let U be
openiff U NZ isopenand U contains iLE,Jn Xi for some
n in N,

While Z is regular, Jones shows that Z is not completely
regular, For example, there can be no continuous function
f:2-[0,1] whichis 0 at p and 1 atevery point of the
closed set Xl . This construction preserves many topological
properties, including T,-ness and para-Lindeldfness. N

6.1.2: Example (MA (w,)) . let X be X(4), and use
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X in Construction 6,1.1., Then 2 is a para-Lindelof Moore space
which is not completely regular. like X,Z hasa o-disjoint,

o-locally countable base and is metacompact and countably paracompact. D

6,1, 3: Example, let X be X(5), andbuild Z by
applying Construction 6,1.1 to X, Then 2 is T3 and para-
Lindeldf but not completely regular., Like X, 2 has character zwl

and is metacompact and countably paracompact. [

We can alsoget T 3 para-Lindeldf spaces which are not
metacompact by modifying, intum, ¥Y(4) and Y¥(5). We replace sets
of two interlacing functions by sets of w-many interlacing functions.

6.1, 4: Example (MA(w,)). Foreach n=z=1, let J =
{{og|t€ w} CP | (1) 0,(0) # 0y(0) when 1fj, (i) the

functions o, are mutually interlacing, and (iii) the sequences

sy(o;lm)}Pn for lsms=n arethe same for every 1 w};
#*

let Jy=\ J,. Nowlet J=J and Y=FUyJ.

Now we topologize Y. The points of ] are isolated, For
each n=1 and f in F, the set Un[f)=[f]‘n:l?]u

{{og|i e w}e I:l o;fn=£f}n forsome ic¢ w} isopen. The
singletons on ] together with these open sets provide & base for
the topology on Y.

The space Y has all the properties mentioned for ¥(4) except
for metacompactness, Provingthat Y is not metacompact is very
similar to proving that ¥(4) is not collectionwise normal. Here,
again, we modify the argument showing that X(4) is not normal, For
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each a <w;, let Fﬂ:{fs F| f(0) = @} and let U, bean
open set with UEI"II-'=F¢. I claim that the open cover | =

{Ua | @< ml} u{n has no point-finite open refinement., To see
this, let Vv be an arbitrary open refinement for u. With respect to
the open cover 1, <define c(f) foreach f in P,An for each
n =1, and A as in the proof that X(4) is not normal, Also let
nz=1, BCA, M:B- ("2)", and CCB be as in that proof.
Now, by Lemma 3,2,9, choose mutually interlacing members of C, oy
forevery 1 e w, no two of which agree at 0, Iet y Dbe the
point {ai[ic w}. Thenforeach ie w, st(y,V¥) meets

P 5,(0) * But each member of y meets at mostone F o+ Since
y  thus lies in infinitely many members of V|, V is not point-finite.

Therefore Y is not metacompact. []

6.1.5: Example., Foreach n=1, let I, = “{"1“’5 w},
r) where {ail ie w}c P and re Tnl (1) 0,(0) # af[ﬂ} when
i# 3§, and (ii) the functions o { are mutually interlacing };

% fe

let b =) Loos Now let J=J, and Y=Fuy]J.
m=n

Now we topologize ¥ . The points of J are isolated. For
each n=1l, f in F, and t in Tn’ the set Untf,t}=
[(ffn:F] U {({og|ic¢ u}.rlr:]’:I () o;fn=1f}n for some
ie w, and (i) givenany Ee tn Eii for some is= n,

Eer iff f)ieE} is open. The singletons on ] together
with these open sets provide a base for the topology on Y.
The space Y has all of the properties mentioned for Y(5)

except for metacompactness . Showing that Y is not metacompact
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is analogous to showing the same result in Example 6.1, 4. A proof,
like the proof showing that ¥(5) is not collectionwise normal, is
based on the argument showing that X(5) is not nomal. []

By taking disjoint unions of some of the para-Lindeldf T,-spaces
already discussed, we can get new ones which combine their negative
properties, We have constructed para-Lindel&f T,-spaces which are
respectively not completely regular, completely regular but not normal,
and normal but not collectionwise normal, and we have now eliminated
metacompactness from the normal spaces, By taking a disjoint union
with one of these modified spaces, we can eliminate metacompactness
from any of the nonnormal spaces as well, In doing this, however, we
also eliminate screenability; in fact, if a space is screenable and count-
ably metacompact, then it is metacompact, Similarly, with a disjoint
union, we can eliminate just screenability from any of the nonnormal
spaces,

If we are willing to give up developability, we can (under
MA(w,)) eliminate o-locally countable bases while retaining first
countability. By a theorem of V., Fedorcuk [10], every paracompact
T,-space with a o-locally countable base is metrizable. So any para-
compact, nonmetrizable Tz-spaca, for example the Sorgenfrey line E,
is T, and para-Lindeldf but has no ¢-locally countable base (and
hence no development, as every para-LindelSf Moore space has a
o -locally countable base). Taking the disjoint union of either X(4)
or Y(4) (under MA( Wy ) with E will leave a first countable,
para-Lindeldf, nonparacompact T,-space which has no o-locally

countable base and is not a Moore space,
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By a theorem of E, Michael [8], a continuous, closed image of
a paracompact Tz-space is itself paracompact, However, in the next
example we see that a Moore space which is a continuous, closed image

of a para-Lindelf Moore space need not be para-Lindeldf,

6.1, 6: Example . Let X be X(5). Using the notation
of Example 5,1.4, define an equivalence relation ~ on X as
follows, Define ~ on I byletting (o,7,r)~ (o', 7, ) iff
o=0,t= 1, and rn31=r'n31. Extend ~ toan
equivalence relationon X byletting x~x for xeHUK.

Then the projectionmap p:X =X/~ is a continuous, closed map.
Although the image X/~  is a Moore space, like the space in [1],
it is not para-Lindeldf. O
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Section 6.2. Open Questions,

Below are some interesting open questions dealing with para-
LindelSf, nonparacompact Ta'“ paces .

1, Without assuming any extra set-theoretic axioms, can one construct

such a space which is first countable ? [j
2. Is there any such space which is not countably paracompact? D

3, 1Is there any such space which is collectionwise normal? (Diana
Pike Palenz [9] has shown that every para-Lindeldf, monotonically
normal space is paracompact. She also showed that every monotonically
normal space with a o-locally countable base is metrizable, an extension

of Fedoruk's theorem, ) O

4, Is there any such space which is normal as well as screenable ?

Is there any such space which is normal and has a o¢-disjoint base? []
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Glossary.

c.c.c.: Atopological space has the gc.c.c, (countable chain
condition) if there is no collection of uncountably many mutually disjoint

open subsets of the space.

collectionwise Hausdorff: A Tl-spaca X is collectionwise
Hausdorff if whenever {J»:cr | @ € A} is a discrete collection of points
of X, there is a mutually disjoint collection {Uul @ € A} of open
subsets of X with K Uu forevery a ¢ A,

collectionwise normal: A topological space X is collection-
Wwise normal if whenever {F_ |a@ ¢ A} is a discrete collection of
closed subsets of X, there is a mutually disjoint collection
{Ua[nsh} of open subsets of X with F,CU, forevery ac A,

countably paracompact: A topological space is countably para-

compact if every countable open cover of the space has a locally finite

open refinement,

developable : A topological space is developable if it has a
a development,

development: A development for a topological space X is a
collection {t}n|n € w} of open covers of X such that at each
point xe€ X, the collection {st(x, Qn]]n € w} is a base for
the topology of X at x.,

discrete: A collection 7 of subsets of a topological space X

is discrete if every point of X has a neighborhood which meets at most
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one member of J. A collection of points of X is discrete if the
associated collection of singletons is discrete.

locally countable: A collection |, of subsets of a topolo-
gical space is locally countable if every point of the space has a neighbor-
hood which meets only countably many members of U,

locally finite: A collection 1y of subsets of a topological
space is locally finite if every point of the space has a neighborhood

which meets only finitely many members of .

metacompact : A topological space is metacompact if every open
cover of the space has a point-finite open refinement,

meta-Lindeléf: A topological space is meta-Lindeldf if every

open cover of the space has a point-countable open refinement.

monotonically normal: A T,-space X is monotonically

normal if there is a function H (known as a monotone normality
operator) which assigns to each ordered pair (x,U), where xe¢ X
and U 1is an open neighborhood of x in X, an open set H(x, U)
such that for elements x and y of X and opensets U and V in X:

(1) if xe U, then xe¢ H(x,U);

(fi)if xe UCV, then H(x,U)CH(x,V); and

(1) 1f x £y, then H(x,X-{y}) nH(y,X-{x})=¢.

Moore space: A T,-space is a Moore space if it is developable,

paracompact: A topological space is paracompact if every open
cover of the space has a locally finite open refinement ,
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para-Lindelf: A topological space is para-Lindeldf if every

open cover of the space has a locally countable open refinement .

point-countable: A collection | of subsets of a topological
space is point-countable if every point of the space belongs to only
countably many member of y.

point-finite : A collection Yy of subsets of a topological
space is point-finite if every point of the space belongs to only finitely

many members of u.

o-disjoint: A collection of subsets of a topological space is
o-disjoint if it is the union of countably many collections, each of which
is mutually disjoint.

o-locally countable: A collection of subsets of a topological
space is o-locally countable if it is the union of countably many locally
countable collections,

o-locally finite : A collection of subsets of a topological
space is o¢-locally finite if it is the union of countably many locally
finite collections.

g-paracompact : A topological space is ©-paracompact if

every open cover of the space has a o¢-locally finite open refinement .

o-para-Lindeléf: A topological space is o-para-Lindeldf

if every open cover of the space has a o¢-locally countable

refinement,

screenable: A topological space is screenable if every open
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cover of the space has a o-disjoint open refinement.

star: Given a collection |y of subsets of a topological space
X andapoint xe X, thestar of x in |, denotedby st(x, lu),
is the union of all of those members of |, to which x belongs,

star-countable: A collection | of subsets of a topological
space is star-countable if each member of |y has nonempty intersection

with only countably many members of .

star-finite: A collection Yy of subsets of a topological space
is star-finite if each member of | has nonempty intersection with only

finitely many members of y.

strongly collectionwise Hausdorff: A Tl-spane X is strongly
collectionwise Hausdorff if whenever {xa | € A} is a discrete
collection of points of X, there is a discrete collection {U_|a € A}
of open subsets of X with X, € Ua forevery a e A,
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