@l $f $$c ,gloss>y $p c4c4c43 ,a topological space has ! $$ub c4c4c4 7c.ta# *a9 3di;n7 $$uf if "! is no collec;n ( unc.tably _m mutu,y 4jo9t op5 subsets (! space4 $p collec;nwise ,hausdorff3 ,a @m ,t1-space @l ;,x is $$ub collec;nwise ,hausdorff $$uf if :5"e @m .(x;.a"\ .a @e ,a.) @l is a 4crete collec;n ( po9ts ( @m ;,x_1 @l "! is a mutu,y 4jo9t collec;n @m .(,u;.a"\ .a @e ,a.) @l ( op5 subsets ( @m ;,x @l ) @m x;.a @e ,u;.a @l = e @m .a @e ,a_4 @l $p collec;nwise normal3 ,a topological space ;,x is $$ub collec;nwise normal $$uf if :5"e @m .(,f;.a"\ .a @e ,a.) @l is a 4crete collec;n ( clos$ subsets ( @m ;,x_1 @l "! is a mutu,y 4jo9t collec;n @m .(,u;.a"\ .a @e ,a.) @l ( op5 subsets ( ;,x ) @m ,f;.a _"k ,u;.a @l = e @m .a @e ,a_4 @l $p c.tably p>acompact3 ,a topological space is $$ub c.tably p>acompact $$uf if e c.ta# op5 cov] (! space has a loc,y f9ite op5 ref9e;t4 $p developa#3 ,a topological space is $$ub developa# $$uf if x has a develop;t4 @l $p develop;t3 ,a $$ub develop;t $$uf =a topological space ;,x is a collec;n @m .(@;,g;n"\ @l n @m @e .w.) @l ( op5 cov]s @l $p 4crete3 ,a collec;n @m @;,f @l ( subsets (a topological space ;,x is $$ub 4crete $$uf if e po9t ( ;,x has a neiacompact3 ,a topological space is $$ub p>acompact $$uf if e op5 cov] (! space has a loc,y f9ite op5 ref9e;t4 $p p>a-,l9del(3 ,a topological space is $$ub p>a-,l9del( $$uf if e op5 cov] (! space has a loc,y c.ta# op5 ref9e;t4 $p po9t-c.ta#3 ,a collec;n @m @;,u @l ( subsets (a topological space is $$ub po9t-c.ta# $$uf if e po9t (! space 2l;gs to at mo/ c.tably _m memb]s ( @m @;,u_4 @l $p po9t-f9ite3 ,a collec;n @m @;,u @l ( subsets (a topological space is $$ub po9t-f9ite $$uf if e po9t (! space 2l;gs to at mo/ f9itely _m memb]s ( @m @;,u_4 @l $p @m .s-_ @l 4jo9t3 ,a collec;n ( subsets (a topological space is @m ".s-disjoint%:] @l if x is ! union ( c.tably _m mutu,y 4jo9t collec;ns1 ea* ( : is mutu,y 4jo9t4 $p @m .s-_ @l loc,y c.ta#3 ,a collec;n ( subsets (a topological space is @m ".s-locally%:] @l c.ta# if x is ! union ( c.tably _m loc,y c.ta# collec;ns4 $p @m .s-_ @l loc,y f9ite3 ,a collec;n ( subsets (a topological space ;,x is @m ".s-locally finite%:] @l if x is ! union ( c.tably _m loc,y f9ite collec;ns4 $p @m .s-_ @l p>acompact3 ,a topological space is @m ".s-paracompact%:] @l if e op5 cov] ( ;,x has a @m .s-_ @l loc,y f9ite op5 ref9e;t4 $p @m .s-_ @l p>a-,l9del(3 ,a topological space is @m ".s-para,lindelof%:] @l if e op5 cov] (! space has a @m .s-_ @l loc,y c.ta# op5 ref9e;t4 $p scre5a#3 ,a topological space is $$ub scre5a# $$uf if e op5 cov] (! space has a @m .s-_ @l 4jo9t op5 ref9e;t4 $p /> ( ;x 9 @m @;,u_3 @l ,giv5 a collec;n @m @;,u @l ( subsets (a topological space ;,x &a po9t @m x @e .+ @;,u_1 @l ! $$ub /> $$uf ( ;x 9 @m @;,u_1 @l denot$ by @m st(x, @;,u)_1 @l is ! union ( all ( ^? memb]s ( @m @;,u @l 6: ;x 2l;gs4 @l $p />-c.ta#3 ,a collec;n @m @;,u @l ( subsets (a topological space is $$ub />-c.ta# $$uf if ea* memb] ( @m @;,u @l has n"ompty 9t]sec;n ) only c.tably _m memb]s ( @m @;,u_4 @l $p />-f9ite3 ,a collec;n @m @;,u @l ( subsets (a topological space is $$ub />-f9ite $$uf if ea* memb] ( @m @;,u @l has n"ompty 9t]sec;n ) only f9itely _m memb]s ( @m @;,u_4 @l $p /r;gly collec;nwise ,hausdorff3 ,a @m ,t1-space @l ;,x is $$ub /r;gly collec;nwise ,hausdorff $$uf if :5"e @m .(x;.a"\ .a @e ,a.) @l is a 4crete collec;n ( po9ts ( @m ;,x_1 @l "! is a 4crete collec;n @m .(,u;.a"\ .a @e ,a.) @l ( op5 subsets ( ;,x ) @m x;.a @e ,u;.a @l = e @m .a @e ,a_4